Annals of Operations Research 78(1998)201-217 201

Using tabu search to determine the number of kanbans
and lotsizes in a generic kanban system

Andrew D. Martin

Department of Political Science, Washington University in St. Louis,
St. Louis, MO 63130, USA

E-mail: admartin@artsci.wustl.edu

Te-Min Chang and Yeuhwern Yih

Department of Industrial Engineering, Purdue University,
West Lafayette, IN 47907, USA

Rex K. Kincaid

Department of Mathematics, The College of William and Mary,
Williamsburg, VA 23185, USA

A generic kanban system designed for non-repetitive manufacturing environments is
described. The purpose of this paper is to determine the number of kanbans and lotsizes to
maximize system performance. System objectives include minimizing cycle time, operation
costs and capital losses. A scalar multi-attribute utility function is constructed and a tabu
search algorithm is proposed to search for the optimal utility value. Simulation is used to
generate objective function values for each system setup. Four different variations of tabu
search are employed. It is shown that a random sampling of the neighborhood provides
good results with the shortest computation time. The tabu search algorithm proposed
performs much better than a local search. The results are then compared to those from a
modified simulated annealing algorithm. Due to the planar nature of the objective function,
itis shown that tabu search can provide excellent results, yet a simulated annealing approach
provides the same results with better computation time.

1. Introduction

The success of Toyota’s production system has drawn increasing attention from
researchers and practitioners. Toyota’s system is based on the principles of Just-in-
Time (JIT) manufacturing [18, 19]. In the JIT approach, kanban systems are employed
to promote low inventory levels and short Jead times. It is well known that kanban
systems work successfully under repetitive environments where market demands are
stable; however, under dynamic environments with variable demands kanban systeins
are inappropriate [10,14,15,17].

© J.C. Baltzer AG, Science Publishers

202 A.D. Martin et al. / The generic kanban system

Consequently, current research focuses on making kanban systems adaptable to
non-repetitive environments. Chang and Yih [7] propose a modified kanban scheme,
the generic kanban system, for such a purpose. The generic kanban system is shown
to provide more flexibility in controlling system performance compared with push
systems and CONWIP [21]. Thus, the feasibility of the generic kanban system to
dynamic environments is justified.

The number of kanbans and different lotsizes affect system performance in
generic kanban systems. Determination of the number of kanbans and lotsizes that
yield the best system performance is thus desired. The purpose of this paper is to
suggest an approach which can be used to maximize system performance.

1.1. Problem definition

A generic kanban system is a pull system. In a pull system, demand is placed on
the final process stage. The availability of components for this stage is checked. If
available, the production of this stage begins; otherwise, a request is issued to the
previous stage for the required parts. Upon receiving the request, the previous stage
either begins production for the requested components or an upstream request is issued.
In this manner, the production of a current stage is “pulled” from the next workstation.
Kanbans are pieces of paper attached to containers holding components. Kanbans are
used to allow jobs to enter each workstation.

Under dynamic environments, demand on the generic kanban system is unknown.
When a demand arrives in the system, kanbans must be issued for all stages since no
parts at any stage are made beforehand. Only when the raw materials arrive at the
Initial station can the actual production of the system start. Moreover, not every kanban
at any stage can be issued immediately since the number of kanbans at each stage
is limited. A request may be deferred if kanbans at some stage are not available.
Production in a generic kanban system thus goes through two phases: the kanban
acquisition phase and the actual production phase.

In the actual production phase, as a job is finished at one stage the component is
moved to the next downstream stage and the attached kanban of this stage is dropped.
This kanban will be acquired by the next demand request. The situation is different
from the repetitive environment of the JIT kanban system, where the free kanban will
trigger a new production immediately. A detailed description of the generic kanban
system can be found in Chang and Yih [7].

Chang and Yih [7] observed that the number of kanbans and lotsizes in the system
directly affect system performance (work-in-process and cycle time). Clearly, tradeoffs
exist between WIP and cycle time based on the number of kanbans and lotsizes. When
minimizing the objectives of both WIP and cycle time, decision making for the best
performance is far from trivial. If the number of kanbans at each stage and lotsize
for job types could be different, the situation would become more complicated. We
strongly suspect that this optimization problem is NP-hard. Hence, we believe that

A.D. Martin et al. / The generic kanban system 203

there does not exist a practical algorithm for determining a globally optimal solution.
We propose a heuristic search algorithm, tabu search, to determine near-optimal system
performance.

1.2. Tabu search algorithm

Tabu search is a heuristic used to solve combinatorial optimization problems
which was first proposed by Glover [11]. Tabu search is a hill-climbing algorithm
which bans certain moves to escape traps of local optimality. The list of the banned
moves is called the tabu list. Memory functions of various lengths are used by the
algorithm to intensify and diversify the search in a systematic manner. The tabu list
must be small enough to allow the search to carefully scrutinize certain parts of the
objective function yet large enough to prevent a return to a previously generated
solution.

Tabu search is designed to solve the following type of problem:

Minimize U(x)

subjectto x € X.

U(x) is the utility function to be defined in section 3. The condition x € X describes
the constraints on the vector x. In practice, it is assumed that the search will begin at
a good, feasible solution. A neighborhood N(x) C X is then constructed to define
adjacent moves, or those moves accessible from vector x. The search proceeds by
searching » € N(x) and selecting the best non-tabu move in the neighborhood. An
aspiration criterion is also used to define a condition where the tabu status of a certain
move can be over-ridden. Short-term memory functions are employed to intensify
and diversify the search. A comprehensive description of tabu search can be found in
Glover and Laguna [13].

For the purposes of this optimization problem, the heuristic used in the tabu
search algorithm is a local improvement scheme, beginning with a good, feasible
solution. Various members of the neighborhood will be tested and a move will be
made based on the value of the objective function. In fact, the neighborhood will be
searched for a move which incrementally improves the value of the objective function
or the move which degrades it least. The tabu list will be employed to direct the search
away from any local optima the search has already encountered. A basic outline for
the tabu search algorithm is taken from Skorin-Kapov [20].

Step 1. Construction phase
= senerate a feasible solution

Step 2. Improvement phase

Perform improvement scheme MAXIT times and then do one of the follow-
ing:

204 A.D. Martin et al. / The generic kanban system

« Intensify the search by restarting the improvement phase at the current best
solution.

» Diversify the search (explore a new area of the feasible region) and repeat
step 2.

« Stop and display the best solution found. The specific algorithm employed
to determine optimal kanban numbers and lotsizes for this problem will be
discussed in section 4.

Tabu search has been extensively employed in the production literature, yet it has
rarely been applied to kanban systems. Tabu search has been applied to many produc-
tion scheduling problems. Barnes and Laguna [4] provide a survey of the production
literature. They discuss how tabu search has been applied to single-machine scheduling
problems. Tabu search has provided near-optimal solutions for many of the problems
for which optimal or near-optimal solutions were never found. Also, the application of
tabu search to the vehicle routing problem is discussed. It is shown that tabu search
gives a 15—19% reduction in distribution costs as compared to other algorithms.

Extensive work has been done in the m-machine, n-job flow shop sequencing
problem [2,22,23]. In this problem, the objective is to minimize maximum flow time
(or makespan). Tabu search has been applied to this historically difficult problem, and
for 80% of the problems tested, tabu search provides the most efficient algorithm
[23]. Taillard [22] extended this work and implemented a parallel tabu search to solve
this sequencing problem. He found drastic improvements in performance times with
respect to Widmer and Hertz’s results, as well as when compared to other algorithms.
Adenso-Diaz [2] further refined the search by looking at the weighted tardiness of
jobs in the flow shop. He used a restricted neighborhood structure which yielded
drastically reduced CPU time while returning solutions of equal quality.

Tabu search has also been employed to solve the traditional job shop sched-
uling problem [9]. In this NP-hard problem, the makespan is once again minimized.
Dell’ Amico and Trubian propose a new heuristic by employing a different neighbor-
hood structure. This extremely robust algorithm was tested by looking at 53 benchmark
problems and the optimal solution or a near-optimal solution was found for each
problem. They concluded that tabu search was far superior to older local search based
algorithms or exact branch and bound methods.

Brandimarte [5] looks at routing and scheduling in the flexible job shop. He uses
a hierarchical meta-heuristic for this optimization problem. He shows that tabu search
is superior to truncated exponentiation schemes, greedy algorithms, and local search
algorithms. It is shown how the tabu search meta-heuristic can be used to produce
many different, robust architectures which provide excellent results for this type of
problem. He explains how many different heuristics can be exploited by tabu search
and shows that the algorithm is quite practical to common applications.

The flexible-resource flow shop scheduling has also been attempted by the tabu
search algorithm [8]. This is a multi-objective optimization problem which requires a

A.D. Martin et al. / The generic kanban system 203

nested search approach. Daniels and Mazzola show how tabu search is quite effective
in providing near-optimal solutions and in fact generates optimal solutions for nearly
70% of the tested problems. These results were quite good for the FRFS problem.

In the next section, the system configuration under study is described and the
associated parameters are defined. In section 3, the multiple objective problem is
formulated as a scalar utility function. Next, a tabu search algorithm is proposed to
determine optimal kanban numbers and lotsizes for this system. In section 5, four tabu
search variations are described and the experiment is designed. Finally, in section 6,
the results are reported and appropriateness of tabu search algorithms for generic
kanban systems is discussed.

2. The system configuration

A single production line which includes three workstations for production proc-
esses and two material handling stations for transportation is proposed (see figure 1).
A job will go from the first workstation to the final workstation and then leave the
system as a finished product. Two types of jobs (A and B) are produced in the system.
The parameters used in this model are listed in table 1.

Wws1 ws2 ws3

WS; Work Station MH: Material handling station

Figure 1. A single production line under simulation study.

Table 1

Parameters used in simulation study.

Station Number of Type A service Type B service Setup time
servers time (min)® time (min)? (min)®
WS1 2 (1.6, 5.6) U(0,4) EXP(3)
MH1 1 U@, 12) U0, 12) N/A
WS2 3 U2, 4) (1, 3) EXP(2)
MH2 1 U(o, 12} U0, 12} N/A
wSs3 2 U, 3) U2, 4) EXP(6)

& At WS, the service time is for 10 units. At MH, it is for one lot.
b Setup time is for one lot.

It may seem that the choices of system parameters are quite arbitrary. However,
using a generic kanban system is a new proposal in the production literatare. In fact,
previous work has shown that generic kanban systems are quite flexible, yet are only

206 A.D. Martin et al. / The gereric kanban system

suitable for certain types of applications [7]. It is impossible to simulate a generic
kanban system with all possible system operating conditions. The parameters chosen
for this experiment are based on two important considerations: system congestion and
bottleneck location. The system configuration posited in table 1 is not congested and
the bottleneck location is at workstation one. Generic kanban systems have been
shown to work effectively in dealing with a bottleneck, as long as the system is not
congested. Therefore, the parameters where chosen to represent a common configura-
tion encountered in industry. It is also important to note that the methodology used to
determine kanban numbers and lotsizes is generic to all system configurations. Thus,
the work in this paper can be applied to other configurations. Nonetheless, the con-
figuration chosen is representative and can be used to effectively judge heuristics for
determining kanban numbers and lotsizes.

In this model, the service time for each server is assumed to be uniformly distri-
buted. The setup time for one lot is assumed to be exponentially distributed and setups
only occur when the previous type of job is different from the current one. The inter-
arrival time of dynamic demands is assumed to be exponentially distributed. The
demand rate is 0.75 per hour for type A; 0.25 per hour for type B. The quantity of
a demand ranges from 120, 240, 360, 480, to 600 units, which is assumed to be
uniformly distributed. A demand can be partitioned into several lots on which kanbans
are attached. The rule for assigning lots to servers is always first-come-first-served
(FCFS).

3. Formulation of multi-objective optimization

3.1. Objectives in the system

Given a generic kanban system, the first step to optimizing system performance
is to define the system objectives. Here, the three objectives considered are minimizing
cycle time, operation costs and capital losses.

The cycle time (CT) is defined as the time between two consecutive outputs. By
reducing the cycle time, a higher throughput rate is achieved. With dynamic demands,
the cycle time is bounded below by the demand rate and above by the congested system
capacity by definition.

The operation cost (OC) consists of several components. First, the work-in-
process (WIP) is considered a cost to the operation. The WIP cost is further divided
into two parts: interest on investment (carrying cost) and storage charges. The compu-
tation of the carrying cost is based on the average WIP flowing through the system.
The storage cost is calculated proportionally to the maximum storage space needed
during the time horizon.

The setup and lot transfer frequency is affected by different lotsizes. The smaller
the lotsize, the greater the frequency will be. Therefore, the associated costs for setup
and transportation are involved. The structure of the operation cost thus consists of
carrying costs, storage costs, setup costs and transportation costs.

A.D. Martin et al. / The generic kanban system 207

Finally, the intangible risk of building up high inventories is considered by
looking at capital loss (CL). High inventory levels indicate high capital investment in
the system and diminished cash flow which directly influences a company’s survival
chance. A loss function on the WIP capital is constructed to capture such possible
loss.

3.2. Utility function approach

Based on the objectives defined above, we would face a multi-objective optimi-
zation problem if we were to simultaneously optimize those objectives. The utility
function approach [16] is adopted to simplify this problem. A utility function is defined
as a scalar function of objectives. The utility function is created by a decision maker
to represent an a priori preference. The benefit of using the utility function is that it
can reflect the decision maker’s tradeoffs (linear or nonlinear) among the objectives
defined.

In our case, the utility function U(x;) is defined as

U(x,) = U(CT, OC, CL),

where CT is cycle time, OC is operation cost, and CL is capital loss. Under the
assumption of the additive property of objectives, the function U(x;) can be further

expressed as
Ulx;} = Wy * U (CT) + Wy = Uy(OC) + W3 * U (CL),

where Uj; is the individual utility function for each objective and W; is the decision
maker’s weighting factor associated with each utility function. For each individual
utility function, linear, concave, or convex models can be used (see figure 2). In the

Linear Concave Convex

OV = objective value; U = utility value

Figure 2. Typical utility function models.

linear model, the utility value has a constant decremental rate compared to a decrease
in the objective value (OV). A concave model is used if the decremental rate in the
smaller OV region is less than that in the larger OV region. The convex case is the
converse of the concave case.

To derive mathematical equations for the utility functions, we have to know the
upper bound of the objective value as well as the upper bound of the utility value. In
our case, the maximal utility value is set to be 10 for each utility function. The upper

208 A.D. Martin et al. / The generic kanban system

bound of the objective value is set based on the simulation results of extreme cases
(i.e., many or very few kanbans in the system). In other words, simulations are run
with nothing in the system and with the system congested. These values, along with
definitional bounds, are used as upper or lower bounds for the objective function.

The individual utility function is formulated as follows. For the cycle time, a
linear model is assumed and the upper bound is set to be 5 hours. The mathematical
form of the cycle time utility function is

U(CT) =2(5-CT),

where CT is the cycle time.
A linear model for the operation cost utility function is also assumed. The upper
bound is set to be $2400. The resultant utility function for the operation cost is

U,(OC) = (2400 — 0OC)/240,

where OC is the operation cost.

Finally, the utility function for the WIP capital loss is defined. The typical shape
of a loss function is exponential (see figure 3); the higher the WIP level in the system,
the more capital a company will lose. From such a loss function, a concave utility

Loss

WIP $

Figure 3. Loss function of WIP capital.

function can be obtained by reflecting the curve along the x-coordinate. The upper
bound for WIP capital is set to be $100,000. The utility function is obtained by fitting
the exponential form as follows:

Us(CL) = 11 —exp(2.4 x 1073CL),

where CL is the capital loss.
The overall utility functions are shown in figure 4.

u U U
10 10 10
0 CYAL 52400°¢ O g100.000 L

CT: cycle time; OC: operation cost; CL: capital loss

Figure 4. Individual utility functions in the generic kanban problem.

A.D. Martin et al. / The generic kanban system 209

Finally, the utility function U(x;} becomes

U(CT, 0C, CL)
= 1%[2(5— CT)] + 1 * [(2400 — OC)/240] + 1 * [11 — exp(2.4 x 10-5CL)],

where the weighting factors for each utility are set to be 1. Weighting each of the
factors in this manner provides greater flexibility for the practitioner, since she can
weight the utility function to best suit her production needs. Similarly, this weighting
1s chosen so objective function values can be compared to previous work. In fact,
different weights on the factors only change the scale of the objective function. It
makes no difference when trying to compare different heuristic methods. Therefore,
the weighting factors for each utility are set to be 1. ' :

From this development, our optimization problem can be stated in combinatorial
terms. Given the discrete system parameters » (n = number of workstations) and m
(m = number of possible lotsizes) as well as the distributions over service and setup
times, this problem can be stated as follows:

Maximize U(CT,OC,CL),
where CT = f(k;, 1)),

0C = g(k;, 1),
CL = h(k;, 1),
subjectto k; €{0,1,2,...} Vk,i=12,...,n,
[,€{0,1,2,..} ViL,j=12...,m,
where k; = integral number of kanbans,

and A discrete number of possible lotsizes.

In the following section, the tabu search algorithm is developed with respect to this
application.

4. Proposed tabu search

After the utility function U(x;} is formulated, a tabu search algorithm is used
to search for the kanban numbers associated with each workstation and lotsizes for
each job to render a maximal utility function. In the tabu search algorithm, memory
parameters as well as neighborhood structures must be defined. A feasible initial
solution is chosen arbitrarily to start the algorithm. The following is an outline for an
ACCEPT(x;} subroutine in a tabu search algorithm for move x; with associated utility
value U(x;).

210 A.D. Martin et al. / The generic kanban system

ACCEPT(x;)

{

IF U(x;) > global best THEN accept x;; /* Aspiration criterion */
ELSE IF U(x;) > local_best AND x; NOT tabu THEN accept x;;
ELSE reject x;;

}

A move is defined with respect to the neighborhood structure. The heuristic can
progress from its original point to any other point in the neighborhood as long as it
meets the criterion in the following subroutine. The neighborhood is constructed such
that the algorithm cannot progress to an infeasibie region by banning such moves. For
this algorithm, the aspiration criterion is set such that tabu moves are accepted only if
that move is the best seen so far. A circular array structure of length short_mem is
employed to keep track of tabu moves. The array holds the move proper as well as the
objective function value associated with that move. A TABUSTATUS(x;) subroutine
is used to determine if a move is acceptable. The search records which moves are the
best so far as well as where the search has gone.

The comparison of the value of the utility function to other values originates
from dealing with deterministic combinatorial problems where U(x;) is constant;
however, under dynamic environments, U(x;) values are estimated based on four repli-
cations from simulation. A more meaningful comparison between utility function
values is by looking at not only the mean of the four values, but also the variance. The
acceptance formula is thus modified to guarantee an improving move has a 90% or
better chance of being indifferent or greater than previous moves. If U(x;) falls in the
indifference region and the mean is greater, the move is accepted. The paired-¢ test
is used to reconstruct the acceptance rule by analogizing the comparison with 90%
confidence interval. The ACCEPT(x;) sub-routine is thus modified as follows:

ACCEPT(x;)
{
IF U(x;) > global_best AND global_t_score > — 1.64 THEN accept x;;

/* Aspiration criterion */

ELSE IF U(x;) > local_best AND x; NOT tabu AND local_t_score > —1.64 THEN
' accept x;;
ELSE reject x;;
}

By varying the length of the tabu list and testing different variations of the
algorithm, tabu search has been shown to escape local optimality and provide good
solutions to various combinatorial optimization problems [12]. Glover explains that
the length of the tabu list is application dependent. Thus, experimentation is required
to find a tabu list long enough to prevent cycling while short enough to not hamper
the search. In the following section four different algorithms tested will be described
and the experimental design will be posited.

A.D. Martin et al. / The generic kanban system 211

5. Experimental design

Four different algorithms are used to optimize kanban numbers and lotsizes.
A tabu length of 10 was arbitrarily chosen to test each of the four neighborhood
structures. This list was used to ban certain solutions within the neighborhood. If a
move was the best vector we had seen so far, the aspiration criterion is met and the
move is accepted regardless of the tabu status of the vector. To compare our results
with previous results [6], two starting solutions were tested for each variation of tabu
search. These configurations are Seed 1 (5, 5, 5, 5, 5, 60, 60), and Seed II (15, 15, 15,
15, 15, 60, 60), where the first five elements are the kanban numbers for each of the
five stations and the last two numbers represent the lotsize for job types A and B. Note
that is this case, Seed I is better than Seed II since the associated objective function
value is larger. The number of trial solutions to be evaluated is limited to 5000 since
computation time for simulation is quite large. This algorithm was coded in the C
programming language. Since the search may end at a point which is not the global
best, the search needs to keep track of the best vector we have seen so far.

The neighborhood structure is defined as follows. For kanbans, the number
in cach station can increase by one, decrease by one, or remain the same (kanban
numbers were required to remain greater than zero and less than forty). The possible
lotsizes are restricted to 10, 20, 30, 40, 60, and 120. The lot size could stay the same,
move to the next higher lotsize, or move to the next lower lotsize. For lotsize 10 (or
120), the lotsize could remain the same or go to the next higher (or lower) lotsize. In
the first variation (RANDOM SAMPLING), 25 points were randomly sampled from
the neighborhood. Twenty-five simulations would take place and moves would be
evaluated by the ACCEPT(x;) subroutine.

The second algorithm (RANDOM FIRST BEST) also randomly sampled from
the entire possible neighborhood, but the ACCEPT(x;) subroutine was modified to
accept the first improving move and restart the search at the accepted point without
looking at other parts of the neighborhood. The first improving move has been shown
to improve computation times in traveling salesman problems and tends to accelerate
convergence [3].

Since the size of the neighborhood is so large, an exhaustive search of the entire
neighborhood is infeasible. However, Chang and Yih [6] developed a heuristic called
the distance effect which restricts possible moves in the neighborhood. Only vectors
with non-decreasing kanban numbers demonstrate the distance effect. Thus, the third
variation (TOTAL DISTANCE) of tabu search simulates all vectors in the neighbor-
hood which demonstrate this distance effect and accepts the best move found.

The final variation tested (TOTAL FIRST BEST) looked at all vectors which
demonstrated the distance effect and used a modified ACCEPT(x;) subroutine to restart
the search at the first improving move. This was applied in an attempt to speed up the
search,

Seed I and Seed II were used as initial solutions for each of these algorithms and
the results are reported below. Subsequently, the best algorithm was looked at more

212 A.D. Martin et al. / The generic kanban system

carefully by implementing tabu lists of varying lengths and comparing those results
to a local search. In the following section, the results are summarized and compared
to previous results which used a modified simulated annealing algorithm [6].

6. Results and analysis

Each of the variations was coded in the C programming language and were run
using each initial solution. The results are summarized in table 2, as well as resuits
from a local search. In all cases, the tabu criterion was invoked to prohibit certain
moves from being made. CPU times are given in the number of simulations run (ITE).

Table 2

Results from each variation of tabu search.

Variation Seed I results Seed II results
RANDOM SAMPLING 24.867 on ITE 793 24,795 on ITE 3371
RANDOM FIRST BEST 24.858 on ITE 3355 24.489 on ITE 80
TOTAL DISTANCE 24.867 on ITE 2435 24.869 on ITE 4167
TOTAL FIRST BEST 24.826 on ITE 2591 24.827 on ITE 4452
LOCAL SEARCH 24.867 on ITE 2876 24.690 on ITE 2869

ITE represents the iteration number.

This is used as a measure because the programs were not run on a dedicated server.
This also allows comparison across different platforms, and allows practitioners to
estimate computation times using their system configuration.

Both of the structures which relied on using the distance effect (TOTAL
DISTANCE and TOTAL FIRST BEST) did provide quality solutions. However, the
computation time involved for generating these solutions was too great. For an applica-
tion where computation time is not limiting, both of these more systematic approaches
are feasible. However, for this problem, computation time is an important factor. Thus,
both of these structures could be quite promising for some problems, but they were
overly limiting for this application.

The results from RANDOM FIRST BEST were not as competitive as those from
the RANDOM SAMPLING structure. The RANDOM FIRST BEST did accelerate
very quickly to a local optimum, yet it made rash moves which kept the search from
finding a better optimum by merely accepting the first improving moves. For prob-
lems where computation times are of utmost importance and slightly lower objective
function values are acceptable, the first-improving refinement would be quite useful.
However, with the kanban number and lotsize problem, the tradeoff in algorithm speed
costs too much. Thus, the RANDOM SAMPLING algorithm is judged to be best, not
only because it provides the best objective function values, but also because it achieved

A.D. Martin et al. / The generic kanban system 213

those values the quickest. The associated kanban numbers for the optimal solution for
Seed I were (1, 2, 4, 5, 10) with lot sizes (40, 40). For Seed II, the random sampling
modification gave (14, 2, 3, 28, 6) with lotsizes (60,60} as the optimal solution.

After the RANDOM SAMPLING algorithm was judged to be superior, the length
of the tabu list (short_mem) was altered to try and determine a tabu length which
adequately diversified the search without overly restricting it. Various tabu lengths
were tested. In table 3 these results are summarized, along with those of a local search
(short_mem = ().

Table 3
Results from using RANDOM SAMPLING with differing tabu lengths.

Tabu length Seed I results ' Seed II results
short_mem = 1 24.867 on ITE 793 Not run

short_ mem= 2 24.867 on ITE 793 Not run

short_ mem= 3 24.867 on ITE 793 Not mun

short_mem = 4 24.867 on ITE 793 Not run
short_mem= 5 24.867 on ITE 793 24.795 on ITE 3371

short_mem = 10
short_mem = 25
short_mem = 50
short_mem = 75
short_mem =100
short_mem= 0

24.867 on ITE 793
24.867 on ITE 793
24.867 on ITE 793
24.867 on ITE 793
24.867 on ITE 793
24.867 on ITE 2876

24.795 on ITE 3371
24.795 on ITE 3371
24.795 on ITE 3371

24.795 on ITE 3371

24.795 on ITE 3371
24.690 on ITE 2869

ITE represents the iteration number.

+
.

40 60

short_mem

8C 100

iTE represents the iteration number and short_mem represents tabu length

Figure 5. Computation time to reach the final solution for Seed I.

The results for Seed I are represented in figure 5. Note that any tabu list length

improved the speed of the search compared to a local search.

214 A.D. Martin et al. / The generic kanban system

For the Seed I problem, the length of the tabu list made no difference to the
resultant objective function value. However, the tabu search meta-heuristic performed
far better than local search. For the Seed II problem, the tabu list did affect the quality
of the solution reached. In fact, implementing the tabu list provided a higher objective
function value for Seed II faster than a local search. This leads us to believe that
the tabu search restrictions are quite useful in accelerating the search to an optimal
solution. Although there is no guarantee our results are optimal, the kanban numbers
and lotsizes which render good system performance are successfully determined.

To determine the effectiveness of the tabu-search meta-heuristic to this type of
problem, the results need to be compared to previous work. Chang and Yih [6]
proposed a modified simulated annealing algorithm to selve this combinatorial opti-
mization problem. For both initial solutions, the tabu search was quite competitive
with a traditional simulated annealing algorithm; however, the modified algorithm
provided results much more quickly. The objective function values obtained were of
equal magnitude, yet the speed of the modified simulated annealing algorithm was
over ten times greater. In fact, Chang and Yih indicate that a modified simulated
annealing algorithm reached a locally optimal solution with 52 iterations for Seed I
and between 355 and 1016 iterations for Seed II. Although the obtained objective

Table 4

Results using simulated annealing and modified simulated annealing.

Traditional SA Modified SA

Seed I results

Seed IT results

24864 on ITE 768
24.864 on ITE 879
24.858 on ITE 545
24.858 on ITE 751
24.811 on ITE 135
24.811 on ITE 135

24.827 on ITE 1654
24.847 on I'TE 1123
24.858 on ITE 1038
24.847 on ITE 1617
24.826 on ITE 758

24.690 on ITE 2529

24.847 on ITE 52
24.847 on ITE 52
24.847 on ITE 52
24.847 on ITE 52
24.847 on ITE 52
24.847 on ITE 52

24.858 on ITE 1016
24.826 on ITE 434
24.864 on I'TE 355
24.864 on ITE 708
24.858 on ITE 731
24.845 on ITE 467

ITE represents the iteration number. Results are for six independent trials.

function values using tabu search are comparable to those found by the modified
simulated anneal algorithm, the modified simulated annealing algorithm arrives at
those values much faster. The reader is referred to table 4 for a presentation of the
results obtained by Chang and Yih [6].

A.D. Martin et al. / The generic kanban system 215

Ackley [1] compares different bit vector optimization algorithms to determine
which is better for certain classes of problems. He tests seven algorithms, including
hill-climbing algorithms, variants of genetic algorithms, and simulated annealing algo-
rithms. He compares the performance of each algorithm by looking at several types
of functions. By looking at the range of solutions generated by different search heu-
ristics, it is observed that the objective function for the kanban number and lotsize
problem is extremely flat and exhibits few local optima. This type of planar function
Ackley would classify as having plateaus. His results indicate that for such flat
functions, simulated annealing algorithms and genetic algorithms perform better than
hill-climbing algorithms, such as tabu search. This is because hill-climbers require
extensive computation times to reach optima; however, the other algorithms can get
there much quicker. Our comparison of the simulated annealing algorithm and tabu
search, our hill-climbing variant, confirms Ackley’s conclusion.

7. Conclusion and future work

A generic kanban system that is adaptable to dynamic environments is presented.
In this paper, an approach to determine the number of kanbans at each station and
lotsizes of job types to optimize system performance is proposed. A representative
generic kanban system is formulated to test different heuristic methods for choosing
optimal kanban numbers and lotsizes. This approach includes formulating the multi-
objective optimization problem by the utility function approach and searching the
maximal utility value by using tabu search. A tabu search algorithm is proposed to
search for an optimal solution, and it is shown that good results are achieved. A random
sampling of the neighborhood is shown to provide good computation times, and the
results achieved are quite competitive with previous results. However, the planar
nature of our objective function limits the success of our algorithm and better lends
itself to simulated annealing and genetic algorithms.

Yet, there are problems that need to be addressed in future work. First, variants
of genetic algorithms need to be considered to determine if they provide better compu-
tation times for this optimization class of problems. Also, more sophisticated tabu
search algorithms could be looked at. Second, in this paper the entire analysis is based
on the linear combination used to define the objective function. A change of those
functions will change the best kanban distribution, lotsizes and the associated initial
seeds. However, practitioners customarily use such objective functions. The proposed
generic kanban system is best tested with the system parameters chosen. In future
work, the heuristics developed for selecting a good initial seed [6] should be employed
to perhaps better our tabu search results. It has been shown that tabu search does
provide high-quality, near-optimal solutions to this optimization problem, yet other
meta-heuristics need to be analyzed before we can determine what approach is best to
solving this combinatorial optimization problem.

216

A.D. Martin et al. / The generic kanban system

Acknowledgements

The authors thank the Center for Intelligent Manufacturing Systems at Purdue

University who funded this study during the summer of 1993, This is a revised version
of a paper presented at the Business Applications of Artificial Intelligence Conference,
October 1993, Charlottesville, Virginia.

References

[1] D.H. Ackley, An empirical study of bit vector optimization, in: Genetic Algorithms ard Simulated
Annealing, L. Davis, ed., Pittman, London, 1987, pp. 170-204

[2] B. Adenso-Diaz, Restricted neighborhood in the tabu search for the flowshop problem, European
Journal of Operational Research 62(1992)27-37.

[3]1 E.I Anderson, Mechanisms for local search: Is first-improving best, Working Paper, Judge Institute
of Management Studies, University of Cambridge, Cambridge CB2 1RX, UK, 1993,

[4] J.W.Barnes and M. Laguna, A tabu search experience in production scheduling, Annals of Opera-
tions Research 41(1993)141-156.

[5]1 P. Brandimarte, Routing and scheduling in a flexible job shop by tabu search, Annals of Operations
Research 41{1993)157-183.

[6] T.M. ChangandY. Yih, Determining the number of kanbans and lotsizes in a generic kanban system:
A simulated annealing approach, Working Paper No. 93-3, School of Industrial Engineering, Purdue
University, 1993.

{71 T.M. Chang and Y. Yih, Generic kanban systems for dynamic environments, International Journal
of Production Research 31(1993).

[8] R.L. Daniels and J.B. Mazzola, A tabu-search heuristic for the flexible-resource flow shop sched-
uling problem, Annals of Qperations Research 41(1993)207-230.

[9] M. Dell’Amico and M. Trubian, Applying tabu search to the job-shop scheduling problem, Annals
of Operations Research 41(1993)231-252,

[101 B.J. Finch and J.F. Cox, An examination of just-in-time management for the small manufacturer:
With an illustration, International Journal of Production Research 24(1986)329-342.

[11] F. Glover, Heuristics for integer programming using surrogate constraints, Decision Sciences §
(1977)156-166.

[12] F. Glover, Tabu search: A tuterial, Interfaces 20(1990)74 -94.

[13] F. Glover and M. Laguna, Tabu search, in: Medern Heuristic Techniques for Combinarorial
Problems, C.R. Reeves, ed., Blackwell Scientific Publications, Oxford, 1993, pp. 70-150

[14] W.R. Hall, Driving the Productivity Machine: Production Planning and Control in Japan, American
Production and Inventory Control Society, Falis Church, VA, 1981.

[15]1 P.Y. Huang, L.P. Rees and B.W. Taylor, A simulation analysis of the Japanese JIT techniques (with
Kanban) for multi-line, multi-stage production systems, Decision Sciences 14(1983)326-344.

[16] R.L.Keeney and H. Raiffa, Decisions with Multiple Objectives: Preferences and Value Tradeoffs,
Wiley, New York, 1976.

[17] L.J. Krajewski, B.E. King, L.P. Ritzman and D.S. Wong, Kanban, MRP, and shaping the manu-
facturing environment, Management Science 33(1987)39-57.

[18] Y. Monden, What makes the Toyota production system really tick?, Industrial Engineering 13(1981)
36-46.

[19] Y. Monden, Tovota Production System: Practical Approach to Production Management, Industrial

Engineering and Management Press, Atlanta, GA, 1983.

A.D. Martin et al. / The generic kanban system 217

[20] J. Skorin-Kapov, Tabu search applied to the quadratic assignment problem, ORSA Journal on
Computation 2(1990)33-45.

[21] M.L. Spearman, D.L. Woodruff and W.J. Hopp, CONWIP: A pull alternative to kanban, International
Joumal of Production Research 28(1990)879—-894.

[22] E. Taillard, Some efficient heuristic methods for the flow show sequencing problem, European
Journal of Operational Research 47(1930)65-74.

[23] M. Widmer and A. Hertz, A new heuristic method for the flow shop sequencing problem, European
Journal of Operational Research 41(1989)186-193. :

