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Abstract

The Scythe Statistical Library is an open source C++ library for statistical compu-
tation. It includes a suite of matrix manipulation functions, a suite of pseudo-random
number generators, and a suite of numerical optimization routines. Programs written
using Scythe are generally much faster than those written in commonly used interpreted
languages, such as R and MATLAB; and can be compiled on any system with the GNU
GCC compiler (and perhaps with other C++ compilers). One of the primary design goals
of the Scythe developers has been ease of use for non-expert C++ programmers. Ease
of use is provided through three primary mechanisms: (1) operator and function over-
loading, (2) numerous pre-fabricated utility functions, and (3) clear documentation and
example programs. Additionally, Scythe is quite flexible and entirely extensible because
the source code is available to all users under the GNU General Public License.

Keywords: matrix operations, pseudo-random number generation, numerical optimization,
C++ .

1. Introduction

This paper introduces the Scythe Statistical Library (Pemstein, Quinn, and Martin 2007) –
Scythe for short. Scythe is a open source C++ library for statistical computation, available at
http://scythe.wustl.edu/. It includes a suite of matrix manipulation functions, a suite of
pseudo-random number generators, and a suite of numerical optimization routines. What sets
Scythe apart from most other C++ libraries for statistical computing is its intuitive interface
and its general ease of use. Writing programs in C++ using Scythe is only slightly more
complicated than writing the equivalent program in R (R Development Core Team 2011) or
MATLAB (The MathWorks, Inc. 2007). This is accomplished through (1) operator and func-
tion over-loading, (2) numerous pre-fabricated utility functions, and (3) clear documentation

http://www.jstatsoft.org/
http://scythe.wustl.edu/
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and example programs.

We have made ease of use a primary design goal for Scythe for three reasons. First, a
clean, relatively intuitive user interface makes it easy to move from ideas sketched in pseudo-
code or prototyped in a language such as R to a full implementation in C++ using Scythe.
Relatedly, experience has shown us that, because of the its interface, it is not difficult for
a reasonably proficient R programmer to pick up Scythe and to start using it to write non-
trivial C++ programs even with only a cursory knowledge of C or C++. Finally, because
code written using Scythe is typically quite transparent and intuitive, maintaining code that
makes extensive use of the library is relatively easy.

Ease of use does not come without some costs. While programs written using Scythe will
typically be quite fast – oftentimes an order of magnitude or more faster than the equivalent
program written in R – they will not typically be as fast as highly optimized code written in
C or Fortran. However, once development and maintenance time are accounted for, Scythe
compares favorably to these other options for most users. Further, as we note below, we
are in the process of closing many of these speed gaps by wrapping high quality BLAS and
LAPACK routines inside Scythe.

We anticipate that Scythe will be of most use to those users who routinely use R or MATLAB
for computationally intensive tasks with runtimes of 10 minutes or more. These users stand to
gain noticeable improvements in performance with relatively minor up front costs of learning
to use Scythe.

The rest of this article is organized as follows. In Section 2 we review the three primary
components of the library – the Matrix class, pseudo-random number generators, and rou-
tines for numerical optimization. We then provide an extended example of how to use Scythe
to perform a parametric bootstrap. This example makes use of pieces of all three primary
components of the library mentioned above. This section also compares the Scythe imple-
mentation to two implementations of the same bootstrap procedure in R. In Section 4 we
show how C++ code using Scythe can be called from within R. Section 5 concludes.

2. An overview of the Scythe library

2.1. The Scythe Matrix class

The Matrix class is the fundamental component of the Scythe library. Virtually every function
in the library operates on or returns Matrix objects. This custom data structure allows us
to maximize library efficiency while hiding most of the underlying details from the user. We
designed the Matrix class primarily for ease of use, especially for those who are more familiar
with mathematics than software development. At the same time, we wished to provide a great
deal of flexibility in implementation. Finally, we wanted to minimize the risk of user error
when programming with Scythe, while utilizing sophisticated data management techniques
under the hood.

Matrix objects allow us to divorce the tasks of data manipulation and matrix arithmetic from
the domain-specific capabilities the library provides. This makes coding with Scythe easier for
both the Scythe development team and our user base. Utilizing Matrix objects requires users
to familiarize themselves with the interface these objects provide, but this initial learning cost
is well worth the long-term gains. If we had used a language primitive, such as two-dimensional



Journal of Statistical Software 3

arrays, to handle data in Scythe, every update to the library’s internals would break existing
code; by using objects we can commit to a particular interface for data manipulation.

The Matrix class provides an interface similar to standard mathematical notation. The class
offers a number of unary and binary operators for manipulating matrices. Operators provide
such functionality as addition, multiplication, element-by-element multiplication, and access
to specific elements within a matrix. One can test two matrices for equality or use provided
member functions to test the size, shape, or symmetry of a given matrix. The class also
sports a number of facilities for saving, loading, and printing matrices. Related portions of
the library allow the user to perform functions from linear algebra, such as transposition,
inversion, and decomposition. In addition, the Matrix class is compliant with the Standard
Template Library (STL) (Silicon Graphics, Inc 2011) and provides a variety of iterators and
accompanying factory methods that make it possible to use the STL’s generic algorithms when
working with Matrix objects. Scythe’s variable debug levels allow users to control the degree
of error checking done by Matrix objects.1 While developing an application, users can take
advantage of extensive error trapping – including range checking of Matrix element accessors
and iterators – to assist in the debugging process. But once the application reaches production
quality, it can be compiled with virtually all error checking disabled, maximizing performance.
Finally, while Scythe provides C++ definitions for all of its routines, it optionally makes use
of the highly optimized LAPACK and BLAS linear algebra packages on systems that provide
them. The use of these packages can significantly improve program speed and does not alter
the library’s external user interface.

Matrix templates

We employ C++ templates to make the Matrix class as flexible as possible. Matrices are
templated on type, order, and style. In principle, Matrix objects can contain elements of any
type, including user-defined types. For the most part, users will wish to fill their matrices
with double precision floating point numbers, but matrices of integers, boolean values, complex
numbers, and even user-defined classes and structs are all possible and potentially useful.2

Matrices may be maintained in either column-major or row-major order. In general, the
choice of matrix order is a matter of user preference, but Scythe adopts a bias for column-
major matrices when necessary. Most library routines exhibit identical performance across
both possible orderings but, when a compromise must be made, we always make it in favor of
column-major matrices. This policy is most evident when considering LAPACK/BLAS sup-
port in Scythe: currently, the library only takes advantage of LAPACK/BLAS functionality
when working with column-major matrices. In addition, although it may sometimes prove
useful to work with matrices of both orders in a single program, we discourage this prac-
tice in general. While they support cross-order operations, Scythe routines are not generally
optimized for this approach.

Scythe matrices use a “data-view” model of data management (Rogue Wave Software 1999;

1Users can set the amount of error checking done by Scythe routines using the pre-processor flag
SCYTHE_DEBUG_LEVEL. See the entry on error.h in Scythe’s Application Programmers’ Interface for details
(Pemstein et al. 2007).

2It is not possible to use all of the matrix operations in Scythe on matrices of all types. For example, if one
attempts to use the Matrix class’s addition operator on a Matrix of a user-defined type for which no addition
operator exists, the compiler will issue an error. Nonetheless, the basic book-keeping functions of the Matrix

class should work with most types.
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Figure 1: Multiple views of a single matrix.

Veldhuizen 2001). This means that it is possible for two or more distinct Matrix objects to
refer to – or view – the same underlying block of data. For example, Figure 1 displays a set
of four matrices, all of which view some portion of the same block of data. The vectors a
and b, and the matrix C all view some portion of X. If one were to modify the first element
in b, the change would be reflected in both a and X. Notice that all the views in this figure
represent sub-matrices of some Matrix, although, in the case of X, this submatrix is X itself.
All views in Scythe follow this convention; it is not possible, for example, to create a view of
the diagonal of X.3 In virtually all respects, Scythe treats a, b, C, and X identically. All four
objects are full-fledged members of the Matrix class and have access to all of the operations
that Scythe provides to manipulate Matrix objects. This approach provides great flexibility
when working with matrices but it also provides some additional advantages. Most notably,
because views represent what are essentially references to underlying blocks of data, we can
copy a Matrix view without explicitly duplicating its data, with often substantial benefits to
program efficiency.

Views imbue the Matrix class with great flexibility, but bring with them a number of com-
plications. First of all, as we discuss below, the semantics of view copy construction and
assignment are somewhat complex.4 Furthermore, the flexibility of views sometimes comes
at the cost of efficiency. For both these reasons, we provide users with two styles of Matrix
object, concrete matrices and views. The style of a Matrix object describes the policy that
governs copy construction of and assignment to the object. Concrete matrices use deep copies
for these tasks; when you copy into a concrete Matrix – whether through copy construction,
an invocation of the assignment operator, or though the Matrix class’s copy() method – the
Matrix allocates a fresh block of data and manually copies the elements of the other object
into its own data block. On the other hand, when one copy constructs a view, no copying
takes place. At the end of the operation, the newly constructed view simply references the
Matrix or submatrix upon which it was constructed. View behavior for assignment is also
different from that for concrete matrices. While a concrete Matrix object will allocate a

3Arbitrarily shaped views may appear in forthcoming library releases.
4Copy construction and assignment are fundamental capabilities of C++ classes. If you are not familiar

with these constructs, you may find a standard C++ reference, like Stroustrup (1997), helpful.
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new data block that duplicates that of the Matrix on the right hand side of the assignment
operator, a view will simply copy the elements in the right-hand-side object into its currently
viewed data block, overwriting the existing values.

There are fundamental trade-offs between concrete matrices and views. Some are straightfor-
ward; the choice between the copy construction and assignment semantics of concretes and
views is often just a matter of personal choice or the problem at hand. But some trade-offs
between the two Matrix types are more subtle, and more fundamental. The data array en-
capsulated by a concrete Matrix is always stored contiguously in memory. A view, on the
other hand, might reference only some sub-portion of another Matrix object’s data, which is
not guaranteed to reside in memory in contiguous order.5 Therefore, iterating over a view or
accessing a particular element of a view involves more overhead computation than it does for
a concrete. On the other hand, the semantics of concrete matrices require that their entire
data block be explicitly copied whenever the copy constructor is invoked. Therefore, it is
generally much less time-consuming to copy a view than it is to copy a concrete Matrix.6

Users should prefer concrete matrices for the bulk of their computation. The reduced efficiency
of view iteration and element access has important consequences for program speed; virtually
all operations on matrices will run faster on a concrete than they will on a view. In fact,
many users will never explicitly construct view matrices. Nonetheless, views perform many
important tasks within Scythe – for example, submatrix assignment, which we will discuss
in more detail later, implicitly constructs views – and understanding how views fit into the
library can greatly improve a user’s ability to write clear and efficient Scythe programs.

Matrix construction

Perhaps the best way to explain the Matrix class, and the data-view model, is through
example. One of the most basic Matrix constructor forms looks like7

Matrix<double,Col,Concrete> M(4, 5, true, 0);

and constructs a 4 × 5 column-major concrete Matrix, filled with double precision floating
point values, all initialized to zero. The first two arguments to the constructor provide matrix
dimensions, the third argument indicates that the constructor should initialize the Matrix,
and the fourth argument provides the initialization value. The later two arguments default
to true and 0 respectively, so the call Matrix<double,Col,Concrete>M1(4, 5); behaves
identically to the above line of code. The template type of the Matrix is specified between <>

5For example, Matrix C in Figure 1 references data that are not stored contiguously in memory because
there is a jump between the element with value “8” and the element with value “10” in the data block. Element
“10” is two memory places away from “8” if X is stored in column-major order (regardless of C’s order type)
and three memory places away if X is stored in row-major order. In fact, if X represents a view of some larger
Matrix object, these memory gaps might be larger still.

6Under the hood, views and concretes are implemented in much the same manner. Therefore, it is possible
for the library to avoid unnecessary copies of concrete matrices’ data blocks in those instances when there is
no possibility of violating the concrete behavioral policy. Consequently, a major efficiency advantage of the
“data-view” model – fast copies – does often extend to concrete matrices. Nonetheless, there are many cases
where using a concrete instead of a view can lead to unnecessary copying.

7Throughout this article, we write short code snippets assuming that the user has chosen to use both
the Scythe and standard library namespaces, by placing the constructs using namespace std; and using

namespace scythe; at the top of her source file. The full-length programs in Sections 3 and 4 make no
assumptions.
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and specifies the element type, ordering (Col or Row), and style (Concrete or View), always
in that order.

Here is a more interesting example, which creates two possible instantiations of the Matrix

X from Figure 1 and prints them to the terminal:

double vals[16] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};

Matrix<> Xcol(3, 4, vals);

Matrix<double,Row,View> Xrow(3, 4, false);

Xrow = 1, 4, 7, 10, 2, 5, 8, 11, 3, 6, 9, 12;

cout << Xcol << endl << Xrow;

1.000000 4.000000 7.000000 10.000000

2.000000 5.000000 8.000000 11.000000

3.000000 6.000000 9.000000 12.000000

1.000000 4.000000 7.000000 10.000000

2.000000 5.000000 8.000000 11.000000

3.000000 6.000000 9.000000 12.000000

This code shows how to create Matrix objects from C++ arrays and comma-delimited lists.
Xcol constructs itself from an array, using the aptly named array constructor, which fills its
object in column-major order. To generate Xrow we first construct an uninitialized Matrix

using the constructor employed in the previous example. We then fill it using a special
version of the assignment operator, which we will discuss in more detail in the next section.
For now, simply observe that, because Xrow uses row-major ordering, it fills itself row by
row. Notice that the template list in the declaration of Xcol is empty. Scythe provides
default values for the template parameters of Matrix objects, and Matrix<>, Matrix<double>,
Matrix<double,Col>, and Matrix<double,Col,Concrete> all refer to the same template
type. Notice also that Xrow is technically a view, although it is in the somewhat peculiar
position – for a view – of being the only Matrix viewing its particular data block.

Perhaps the most useful constructor is the file constructor, which initializes a Matrix object
of arbitrary size and shape from a text file. Given a text file amatrix.txt containing a space-
delimited, row-major ordered list of values, with one row per line, one can construct a Matrix

object called F with the call Matrix<> F("amatrix.txt").8

Copy construction and assignment

Copy construction and assignment are the two primary mechanisms for copying objects in
C++. As we have emphasized, concrete matrices and views behave differently from one
another in respect to both copy construction and assignment. Consider the following program:

typedef Matrix<double,Col,Concrete> colmatrix;

typedef Matrix<double,Row,Concrete> rowmatrix;

8Future library releases will provide support for matrices stored in a variety of common file formats, such
as comma-separated value.
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typedef Matrix<double,Col,View> colview;

colmatrix A(2, 3, true, 0.0);

rowmatrix B(2, 3, true, 1.0);

rowmatrix D(A);

colview E = B;

D = B;

E = A;

cout << "A:\n" << A << "B:\n" << B << "D:\n" << D << "E:\n" << E;

A:

0.000000 0.000000 0.000000

0.000000 0.000000 0.000000

B:

0.000000 0.000000 0.000000

0.000000 0.000000 0.000000

D:

1.000000 1.000000 1.000000

1.000000 1.000000 1.000000

E:

0.000000 0.000000 0.000000

0.000000 0.000000 0.000000

Before considering what this code does, notice that we use the typedef keyword to create
aliases for the various Matrix template types that we employ throughout the example. This
trick helps to reduces the number of keystrokes necessary to declare complicated Matrix

objects and enhances program readability. In this case we create aliases for row- and column-
major matrices and column-major views. After defining the type aliases, this code constructs
two 2 × 3 matrices, A and B, filling the first with zeros and the second with ones. It then
initializes two more matrices through copy construction. The first of these, D, is a concrete
matrix and is a distinct copy of A. The second copy-constructed matrix, E, is a view of B.
Notice that the orders of the two matrices involved in a given copy construction need not
match. Also, notice the syntax we use to copy construct D differs from that used to construct
E. It is important to realize that this later construct also represents an invocation of the
copy constructor, even though it uses the = character, something we normally associate with
assignment.9 Finally, we invoke the assignment operator on both the concrete matrix (D) and
the view (E). The code D = B causes D, which was distinct copy of A after construction, to
become a distinct copy of B. On the other hand, the instruction E = A indirectly fills B with
the elements in A, as modulated by the view E.10

9The various subtle distinctions between copy construction and assignment are a common source of bugs
in C++ programs.

10Note that the operation E = A will raise an exception if E and A – and, by proxy, B – are not the
same size unless the user has specifically enabled R-style recycling in the view assignment operator with
the SCYTHE_VIEW_ASSIGNMENT_RECYCLE pre-processor flag. We do not enable recycling semantics in view as-
signment by default because of the potential for subtle bugs in user code that it introduces.
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As we foreshadowed in the previous section, Scythe provides a special form of assignment
operator for Matrix that allows users to fill Matrix objects with lists of primitive values
without using intermediate arrays. The code

Matrix<> Z(3, 3, false);

Z = 1, 2, 3, 4, 5, 6, 7, 8, 9;

constructs a 3 × 3 Matrix object Z and fills it with the values one through nine, in the
matrix’s template (in this case column-major) order. This list-wise assignment operator
works identically across concrete matrices and views, always filling a matrix with values and
overwriting its original contents, regardless of the style of the matrix. Furthermore, list-wise
assignment uses a recycling rule identical to that used by the R language; if the number of
elements in the right hand side list is less than that in the Matrix the operator will recycle
list elements until the Matrix is full. For example, the assignment Z = 1 fills Z with ones,
and the assignment Z = 1, 0, 1, 0 causes Z to represent the matrix1 0 1

0 1 0
1 0 1

 .

Working with elements and sub-matrices

The Matrix class provides a number of ways to access distinct sub-portions of matrices using
multiple overloaded definitions of the () operator. These access operators all provide range-
checking when Scythe’s error checking facilities are set to their maximum value.

At the most basic level, users can access individual elements of matrices with index operators.
There are two types of Matrix index operator, one- and two-argument. The one-argument
index operator accesses a Matrix object’s elements in terms of its template order, starting at
the index 0. For example, the sequence of assignments

Xcol(0) = Xcol(3) = Xcol(6) = Xcol(9) = 0;

zeros out the first row of the Matrix Xcol defined above.11

The two-argument index operator, on the other hand, allows one to reference a Matrix element
by row and column subscripts, in that order. The following function uses the two-argument
index operator to provide one possible implementation of matrix transposition for an arbitrary
Matrix template:

template <typename T, matrix_order O, matrix_style S>

Matrix<T, O, S>

my_transpose1 (const Matrix<T, O, S>& M)

{

Matrix<T, O, S> result(M.cols(), M.rows(), false);

11It is also possible to access single elements of a Matrix with the [] operator, but only using the single
argument construction. Because this syntax does not generalize to the other forms of the access operator – and
because code that passes two arguments to the [] operator will generally compile, causing hard to diagnose
run-time errors – we discourage the use of this form of the single argument index operator.
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for (unsigned int i = 0; i < M.rows(); ++i)

for (unsigned int j = 0; j < M.cols(); ++j)

result(j, i) = M(i, j);

return result;

}

This function also makes use of two of the Matrix class’s metadata accessors, rows() and
cols(), which return a Matrix object’s dimensions. Matrix contains a variety of such acces-
sors, including predicates like isSquare() and isSingular().

Another version of the two-argument index operator – the vector access operator – uses the
placeholder object _ to access entire sub-vectors. For example, another way to zero out the
entire first row of Xcol requires only the single assignment Xcol(0, _) = 0.12 View access
motivates another possible implementation of matrix transposition:

template <typename T, matrix_order O, matrix_style S>

Matrix<T, O, S>

my_transpose2 (const Matrix<T, O, S>& M)

{

Matrix<T, O, S> result(M.cols(), M.rows(), false);

for (unsigned int i = 0; i < M.rows(); ++i)

result(_, i) = M(i, _);

return result;

}

The final form of the () operator is the sub-matrix access operator. This operator allows the
caller to access a rectangular region of an existing Matrix object. The operator takes four
arguments: the row and column indices of the upper left corner of the sub-matrix followed
by the row and column indices of the bottom right corner of the rectangular region. Using
this operator, and the vector access operator, we are now in a position to define the set of
matrices described by Figure 1:

Matrix<> X(3, 4, false);

X = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12;

Matrix<double,Col,View> a = X(_, 0);

Matrix<double,Col,View> b = X(1, _);

Matrix<double,Col,View> C = X(0, 2, 1, 3);

Matrix iterators and the STL

Access operators do not provide the only way to access individual Matrix elements. Scythe
provides a set of STL-compliant iterators that allow one to traverse a Matrix in either row-

12Note that this assignment takes advantage of both the recycling behavior of the list-wise assignment
operator and the data-view model. First, the vector access operator constructs and returns a vector view of
the Matrix it is invoked upon. Then, the list-wise assignment operator is invoked on that view, recycling the
value on the right hand side of the equation until the view is full.
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major or column-major order.13 The factory methods begin() and end() return iterator
objects pointing to the first and last element in a Matrix object, respectively. The iterators
returned by these methods traverse the Matrix object they reference in its template order.
We also provide overloaded template versions of these factory methods, which allow the user
to iterator over any Matrix in either row- or column-major order. Iterators play an important
role within the library because, among other reasons, iterators provide a method of traversing
contiguous elements in a view that is substantially faster than that provided by the index
accessors.14 But iterators are also an invaluable tool for library users. To demonstrate
the utility of these factory methods, and iterators in general, consider yet another possible
implementation of transpose:

template <typename T, matrix_order O, matrix_style S>

Matrix<T, O, S>

my_transpose3 (const Matrix<T, O, S>& M)

{

if (O == Row) {

return Matrix<T, O, S> (M.cols(), M.rows(), M.template begin<Col>());

} else {

return Matrix<T, O, S> (M.cols(), M.rows(), M.template begin<Row>());

}

}

This function uses the array constructor, which is also known as the iterator constructor.15

When the function argument M is stored in row-major order the function calls the constructor
in such a way that it traverses M in column-major order – as specified by the factory method
call M.template begin<Col>()16 – and does the opposite when M’s order is column-major.

The most important advantage afforded by iterators is that they put the power of the STL
at Scythe users’ fingertips. Among other things, the STL provides a set of algorithms for
performing common computational tasks on sets of objects. To abstract away from the details
of myriad possible container classes, STL algorithms rely on iterators to describe ranges of
data. For example, using the STL, one can shuffle X by writing

random_shuffle(X.begin(), X.end());

or sort the second column of X with the line

sort(X(_, 1).begin(), X(_, 1).end());

In general, iterators allow Scythe matrices to interact with a diverse array of existing generic
software.

Arithmetic, logical, and linear algebraic operations

13For a detailed description of the different types of STL-compliant iterators see Josuttis (1999). For a more
complete description of the different types of iterators provided by Scythe, see Pemstein et al. (2007).

14For concrete matrices, index accessors incur no performance penalty.
15Array variables in C++ are simply pointers to the first element of an array, stored sequentially in memory.

Pointers are, technically, a form of iterator. Therefore the Matrix array constructor is actually an iterator
constructor.

16The template keyword in this call helps the compiler to correctly identify the version of begin() to use
for this invocation.
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Operation Native C++ BLAS/LAPACK

Transpose yes no
Determinant yes yes
Fast AB + C yes yes
Fast A>A yes yes
Inversion yes yes
Cholesky Decomposition yes yes
Eigenvalue Decomposition no yes
LU Decomposition yes yes
QR Decomposition no yes
Singular Value Decomposition no yes

Table 1: Linear algebra routines.

The final set of facilities for working with Matrix objects consist of a variety of arithmetic
and logical operators and a number of linear algebra functions. These routines allow us to
add, subtract, and multiply matrices, check matrix equality, and perform common matrix
transformations such as inversion and decomposition. Consider the basic problem of finding
the least-squares coefficients in the linear model

y = Xβ + ε, ε ∼ Nn(0, σ2ε In).

Using Scythe, one can solve this problem in C++ much as one would in an interpreted
language like MATLAB or R, by writing

Matrix<> beta_hat = invpd(crossprod(X)) * t(X) * y;

where invpd() calculates the inverse of a positive definite symmetric matrix, crossprod()
computes the quantity X>X, t() returns the transpose of a matrix, and * is the matrix
multiplication operator.17 In short, Scythe turns C++ into a convenient language for doing
matrix algebra.

Scythe’s matrix operators do not only perform mathematical functions, but also support a
host of logical operations. One can negate the values in a matrix X with the invocation !X or
compare the elements in two conforming matrices X and Y using the ==, !=, <, >, <=, and >=

operators, where, for example, X == Y returns a matrix of type Matrix<bool> with the same
dimensions as X and Y. And, to test if X and Y are identical, one simply writes X.equals(Y).

Finally, as the linear regression example demonstrated, Scythe’s mathematical and logical
matrix operators are complemented by a variety of work-horse linear algebra routines. Table 1
provides an overview of Scythe’s linear algebra support and indicates whether each operation
is implemented in native C++, as a wrapper to a BLAS or LAPACK routine, or both.18

17In Scythe * performs matrix multiplication while % performs element by element multiplication. Other
common mathematical operators include +, -, /, and the method kronecker().

18Where possible, we plan to provide both native C++ and BLAS/LAPACK wrappers for all linear algebra
routines in future library releases. Scythe also provides a variety of matrix utility operations – column and
row binding, vectorization and expansion, sorting, and so forth – and functions for solving systems of linear
equations (using the various decompositions listed in Table 1) that we do not describe here. See Pemstein
et al. (2007) for a full listing of these functions.
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2.2. Pseudo-random deviates in Scythe

Scythe is not just a matrix library. It also contains extensive support for (pseudo)random
number generation. The library takes an object-oriented approach to this problem, providing
an abstract base class, rng, that defines an interface for random number generators (RNGs)
and contains the code necessary to simulate random variates from a multitude of commonly
used probability distributions, including, but not limited to, the normal, beta, binomial, and
gamma distributions.19

It is not possible to instantiate rng objects directly. Instead, the user must construct an
instance of an extending class which implements the rng interface by providing methods that
generate random uniform variates. Scythe provides two such classes. The first of these,
mersenne, encapsulates the Mersenne Twister pseudorandom number generator developed by
Matsumoto and Nishimura (1998) and is based on source code made freely available by the
authors (Matsumoto and Nishimura 2002). This generator is fast and reliable, exhibiting both
an extremely high period of 219937 − 1 and an order of equidistribution of 623 dimensions,
and is suitable for most applications. The library also sports a second implementation of the
rng interface, the lecuyer class, which uses an algorithm developed by L’Ecuyer, Simard,
Chen, and Kelton (2002) and is also based on source code made freely available by the authors
(L’Ecuyer, Simard, Chen, and Kelton 2000). This RNG provides an interface for generating
multiple parallel streams of random numbers and is based on an underlying generator with
a period of approximately 3.1 × 1057 and that, according to the authors, “performs well
on the spectral test in up to (at least) 45 dimensions (L’Ecuyer et al. 2002).” This RNG
is useful for threaded applications that must simultaneously generate multiple independent
streams of random numbers, such as programs implementing certain Markov chain Monte
Carlo (MCMC) algorithms.

Constructing and using a Scythe RNG is straightforward. For example, the following code
calculates the sum of two random uniform numbers on the interval (0, 1), one random variate
simulated from the normal distribution with mean zero and variance one, and a single sim-
ulated value from the F distribution with 2 and 50 degrees of freedom, using the Mersenne
Twister:

mersenne myrng;

double sum = myrng() + myrng.runif() + myrng.rnorm(0, 1) + myrng.rf(2, 50);

Note that we can generate random uniform numbers with one of two calls. This first uniform
variate in the example is generated with an invocation of the () operator, while the second is
produced by the runif() method. Behaviorally, these calls are identical and rng-extending
classes such as mersenne need only implement the runif() method.20 The () operator is
implemented by the base class and allows Scythe RNGs to behave as function objects which
return random uniform numbers when invoked.

Scythe also provides tools for using externally provided quasi-random number generators
with the rng class. The wrapped_generator class allows users to extend the rng class by

19For a full list of the probability distributions supported by Scythe’s random number generation routines,
see Pemstein et al. (2007). The library also includes probability density and cumulative distribution functions
for these distributions, using a syntax much like R’s.

20In fact, implementing the runif() method, and two overloaded templates of the method, are the only
requirements placed on a class implementing the rng interface.
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wrapping any function object that returns uniform random numbers on the (0, 1) interval
when its function call operator is invoked. For example, the Boost C++ libraries (Dawes
et al. 2011) include a number of quasi-random number generators – including an alternative
implementation of the Mersenne Twister generator provided by Scythe – that behave in this
way. The following code instantiates an instance of the Boost Mersenne Twister, wraps it with
Scythe’s rng class, and uses the resulting object to generate a six by six matrix of standard
normal random variates:

#include <iostream>

#include <boost/random/mersenne_twister.hpp>

#include <boost/random/uniform_real.hpp>

#include <boost/random/variate_generator.hpp>

#include <scythestat/rng/wrapped_generator.h>

typedef boost::variate_generator<boost::mt19937&, boost::uniform_real<> >

boost_twister;

boost::mt19937 generator(42u);

boost_twister uni(generator, boost::uniform_real<> (0, 1));

wrapped_generator<boost_twister> wgen(uni);

cout << wgen.rnorm(6, 6, 0, 1) << endl;

As we have seen, Scythe takes advantage of C++’s polymorphic features to transparently
allow users to draw random numbers from a vast array of distributions while permitting
users tremendous flexibility in their choice of underlying pseudorandom number generator.
The approach that rng and its extending classes use to achieve dynamic function dispatch is
somewhat unconventional and deserves some discussion. A traditional implementation of the
RNG class hierarchy would look something like this:

class rng {

public:

virtual double runif() = 0;

...

};

class rng_impl : public rng {

public:

double runif ()

{

...

}

...

};

Under this traditional model, invoking the runif() function through a rng pointer or reference
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would dynamically invoke the function defined by the extending class. This is exactly the
behavior we want, but virtual function dispatch in C++ is fraught with efficiency issues: it
requires extra memory accesses and inhibits most C++ compilers from effectively inlining
and optimizing the code within the virtual function. This can substantially decrease the
performance of code that calls these functions often. Statistical applications, most notably
MCMC estimators, often invoke the random uniform number generator tens of thousands of
times in a single run and are especially susceptible to the ill effects of virtual function dispatch
in their random number generators.

To avoid virtual function dispatch, and to allow the compiler to effectively optimize our
RNGs, we use a technique often called the “Barton and Nackman Trick” to achieve a form of
“dynamic” dispatch that is performed at compile time (Barton and Nackman 1994). rng and
its extending classes take the form:

template <class RNGTYPE>

class rng {

public:

RNGTYPE& as_derived()

{

return static_cast<RNGTYPE&>(*this);

}

double runif()

{

return as_derived().runif();

}

...

};

class rng_impl : public rng<rng_impl>

{

public:

double runif()

{

...

}

...

};

In this approach, the base class is templated on the type of the derived class, allowing it to
statically invoke functions in the derived class and mimic virtual function dispatch without
incurring the unwanted overhead.

Users can use rng_impl in the above example as a template when implementing Scythe-
compatible RNGs on top of their preferred uniform generators, automatically inheriting the
ability to generate variates from multiple probability distributions from rng. However, even
users who are happy with the RNG implementations provided by Scythe should be aware of
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Operation Function Name(s)

Integration intsimp(), adaptsimp()
Differentiation gradfdifls()

Gradient Calculation gradfdif()

Hessian Calculation hesscdif()

Jacobian Calculation jacfdif()

Optimization BFGS(), zoom(),
linesearch1(), linesearch2()

Solving Nonlinear Systems nls_broyden()

Table 2: Numerical routines.

this implementation wrinkle. When writing functions that take an arbitrary rng object as an
argument, one needs to write definitions that appropriately deal with the fact that rng is a
template class. This is the correct way define such a function:

template <typename RNGTYPE>

void foo (rng<RNGTYPE>& generator);

On the other hand, the following defintion is wrong:

void foo (rng& generator);

2.3. Numerical utilities in Scythe

Scythe’s last major code module is a small suite of routines – listed in Table 2 – that perform
numerical optimization, integration, and related operations. The keystone of this portion of
the library is the BFGS() routine, which solves unconstrained nonlinear optimization problems
using the Broyden-Fletcher-Goldfarb-Shanno method,21 and allows Scythe users to perform
maximum likelihood estimation from within their C++ programs.

Scythe’s optimization functions all perform operations on other, user-defined, functions. For
example, say we wish to calculate

∫ 4
0 f(x) dx where f(x) = x3 + 2x. To accomplish this task,

we first need to implement a function encapsulating f(·):

double x_cubed_plus_2x (double x)

{

return (x * x * x + 2 * x);

}

We could then print the result using Scythe’s adaptive integration routine

cout << adaptsimp(x_cubed_plus_2x, 0.0, 4.0, 10) << endl;

80

21The numerical optimization and integration routines represent the least mature portion of Scythe. As
library development progresses, we will replace BFGS() with a generic optimize() function and provide access
to a variety of different optimization algorithms.
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where the last argument to adaptsimp() indicates the number of subintervals that the func-
tion should use when performing its calculation. While this approach – passing the function
to adaptsimp() as a function pointer – will work, it is not the recommended way to pass
function arguments to adaptsimp() and other Scythe methods that operate on functions. In
the previous section, we noted that virtual function dispatch can often adversely affect pro-
gram performance. Dereferencing function pointers is intimately related to virtual function
dispatch and brings with it the same performance issues. This penalty can be quite sub-
stantial in routines, like numerical optimization or integration, where a function is repeatedly
evaluated in a tight loop. Therefore, we recommend using function objects to encapsulate
functional concepts.22 For example, a better way to evaluate

∫ 4
0 x

3 + 2x dx is:

struct x_cubed_plus_2x_b

{

double operator() (double x) const

{

return (x * x * x + 2 * x);

}

};

adaptsimp(x_cubed_plus_2x_b(), 0.0, 4.0, 10);

Using function objects with these procedures provides advantages beyond simple efficiency.
As we will demonstrate in the following section, function objects allow Scythe’s optimization
and integration routines to interact with functions that maintain arbitrary state information
across invocations.

3. An example using Scythe: A parametric bootstrap

In this section we provide an example of how Scythe can be used to code a parametric
bootstrap procedure in C++. We go on to compare the implementation to two equivalent
implementations in R. We find that the Scythe implementation is only slightly more compli-
cated than the R implementations. Further, the Scythe runtime is approximately 11% of the
runtime of the R implementations.

Consider a Poisson regression model:

yi
ind.∼ Poisson(µi) i = 1, . . . , n

µi = exp(x>
i β)

with observed data

y =


5
6
7
8
9


22For a detailed discussion of function objects, see Stroustrup (1997, Chapter 18.4).
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and

X =


1 1 0
1 1 1
1 2 0
1 2 1
1 3 0


Instead of using the standard asymptotic results to calculate standard errors we decide to use
the parametric bootstrap.23 One can do this in R using the boot (Canty and Ripley 2010)
package:

thedata <- data.frame(y = c(5, 6, 7, 8, 9),

x1 = c(1, 1, 2, 2, 3), x2 = c(0, 1, 0, 1, 0))

glm.fit <- glm(y ~ x1 + x2, data = thedata, family = poisson)

library("boot")

pois.dgp <- function(data, beta) {

X <- cbind(1, data$x1, data$x2)

m <- exp(X %*% beta)

newdata <- data

newdata$y <- rpois(nrow(data), m)

return(newdata)

}

stat.fun <- function(data) {

coef(glm(y ~ x1 + x2, data = data, family = poisson))

}

boot.out <- boot(thedata, statistic = stat.fun, R = 10000,

sim = "parametric", ran.gen = pois.dgp, mle = coef(glm.fit))

Executing this code on an Intel Core i7-975, clocked at 4 GHz, with 12 GB DDR3 SDRAM,
running Ubuntu Linux 10.04 and R version 2.10.1, takes approximately 35 seconds.

It is also relatively easy to conduct the same parametric bootstrap by hand in R:

thedata <- data.frame(y = c(5, 6, 7, 8, 9),

x1 = c(1, 1, 2, 2, 3), x2 = c(0, 1, 0, 1, 0))

glm.fit <- glm(y ~ x1 + x2, data = thedata, family = poisson)

M <- 10000

beta.store <- matrix(NA, M, 3)

X <- cbind(1, thedata$x1, thedata$x2)

beta.mle <- coef(glm.fit)

for (i in 1:M) {

m <- exp(X %*% beta.mle)

23See Efron and Tibshirani (1993) for an introduction to the parametric bootstrap as well as the bootstrap
more generally.
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y.new <- rpois(nrow(thedata), m)

glm.fit.i <- glm(y.new ~ thedata$x1 + thedata$x2, family = poisson)

beta.store[i,] <- coef(glm.fit.i)

}

This hand-rolled procedure takes about 37 seconds on the same machine as described above.

It is also relatively easy to code this same procedure in C++ using Scythe. First, we need to
create a file, say pboot.cc, to hold the program. At the top of this file we have to include
some headers and import the standard and Scythe namespaces:

#include <iostream>

#include <scythestat/rng/mersenne.h>

#include <scythestat/distributions.h>

#include <scythestat/ide.h>

#include <scythestat/la.h>

#include <scythestat/matrix.h>

#include <scythestat/rng.h>

#include <scythestat/smath.h>

#include <scythestat/stat.h>

#include <scythestat/optimize.h>

using namespace scythe;

using namespace std;

Next, we define a PoissonModel function object to encapsulate the data needed by the maxi-
mization algorithm. This class defines two member matrices, X_ and y_, to hold the regressors
and outcome variables, respectively. Invoking the () operator on an instance of PoissonModel
returns the negative log-likelihood for the Poisson regression model.

class PoissonModel {

public:

double operator() (const Matrix<double> beta){

const int n = y_.rows();

Matrix<double> eta = X_ * beta;

Matrix<double> m = exp(eta);

double loglike = 0.0;

for (int i=0; i<n; ++i)

loglike += y_(i) * log(m(i)) - m(i);

return -1.0 * loglike;

}

Matrix<double> y_;

Matrix<double> X_;

};
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Now we can begin the definition of our main driver function, initialize the random num-
ber generator, generate some synthetic data with n = 5 observations, and instantiate the
PoissonModel object.

int main () {

mersenne myrng;

const int n = 5;

Matrix<double> y = seqa(5, 1, n);

Matrix<double> X(n, 3, false);

X = 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 0, 1, 0, 1, 0;

PoissonModel poisson_model;

poisson_model.y_ = y;

poisson_model.X_ = X;

Next, we will compute maximum likelihood estimates for the model, using ordinary least
squares esimates as starting values.

Matrix<double> theta = invpd(crossprod(X)) * t(X) * log(y);

Matrix<double> beta_MLE = BFGS(poisson_model, theta, myrng, 100, 1e-5,

true);

The bootstrap loop comes next. During each of the M iterations, the code first calculates the
linear predictor eta and the Poisson mean parameter vector m. Next, it generates parametric
bootstrap values and stores them in the PoissonModel object. Finally it calculates one
bootstrap draw for the coefficient vector and stores the result in the beta_bs_store matrix.

const int M = 10000;

Matrix<double> beta_bs_store(M, 3);

for (int i = 0; i < M; ++i){

Matrix<double> eta = X * beta_MLE;

Matrix<double> m = exp(eta);

for (int j = 0; j < n; ++j)

poisson_model.y_(j) = myrng.rpois(m(j));

beta_bs_store(i, _) = BFGS(poisson_model, beta_MLE, myrng, 100, 1e-5);

}

The last portion of the program prints the maximum likelihood point estimates and boot-
strapped standard errors to the screen, saves the bootstrap estimates to an output file, and
completes the definition of main().

cout << "The MLEs are: " << endl;

std::cout << t(beta_MLE) << "\n";

cout << "The bootstrap SEs are: " << endl;
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R (boot) R (by hand) Scythe
MLE Bootstrap SE MLE Bootstrap SE MLE Bootstrap SE

β1 1.340 0.609 1.340 0.618 1.340 0.612
β2 0.289 0.256 0.289 0.258 0.289 0.257
β3 0.162 0.397 0.162 0.398 0.162 0.395

Table 3: Parametric bootstrap results.

std::cout << sdc(beta_bs_store) << "\n";

beta_bs_store.save("out.txt");

return 0;

}

This code can be compiled using GCC with:

g++ -O3 -funroll-loops pboot.cc -o pboot

and run in the usual way:

./pboot

Doing so, we find that this code takes less than four seconds to run.24 Figure 2 displays a
comparison of the run times for the three implementations of the parametric bootstrap. Note
that while the Scythe version requires more code to be written, the individual pieces of code
are not difficult to decipher by someone who has some experience with a language such as
R or MATLAB– even if they have no experience with Scythe or C++. Further, the Scythe
implementation is dramatically faster than either R implementation. Finally, as Table 3
shows, the three implementations generate virtually identical maximum likelihood estimates
and bootstrapped standard errors.

4. Using Scythe in R packages

It is also very easy to use Scythe in C++ code that is called from R. Indeed, several R packages
already make use of an older version of Scythe.25

Perhaps the easiest way to use Scythe in conjunction with R is to install Scythe on a local
machine as described in the Scythe distribution and to then #include the necessary Scythe
header files from the library path and build accordingly. For instance, the following code
(in a file called Axplusb1.cc) calculates Ax + b quickly in C++ using the Scythe gaxpy()

function.

#include <scythestat/la.h>

#include <scythestat/matrix.h>

24Additionally, compiling with the -O3 and -funroll-loops options took under three seconds.
25R packages that make use of some version of Scythe include: MasterBayes (Hadfield, Richardson, and Burke

2006), Matching (Sekhon 2011), MCMCpack (Martin, Quinn, and Park 2011), and smoothSurv (Komarek 2010).
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Figure 2: Run time comparison for parametric bootstrap example.

using namespace scythe;

extern "C"{

void AxplusbScythe (const double* Adata, const int* Arow, const int* Acol,

const double* xdata, const int* xrow, const int* xcol,

const double* bdata, const int* brow, const int* bcol,

double* ydata)

{

Matrix<double, Col> A(*Arow, *Acol, Adata);

Matrix<double, Col> x(*xrow, *xcol, xdata);

Matrix<double, Col> b(*brow, *bcol, bdata);

Matrix<double> y = gaxpy(A, x, b);

for (int i = 0; i < *brow; ++i){

ydata[i] = y(i);

}

}

}

To build this into a shared library Unix, Linux, or Mac OS X, one simply types:

R CMD SHLIB Axplusb1.cc
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at the shell prompt. This generates a shared object file called Axplusb1.so that can be loaded
into R and called in the usual way:

Axplusb <- function(A, x, b){

dyn.load("Axplusb1.so")

output <- .C("AxplusbScythe",

Adata = as.double(A),

Arow = as.integer(nrow(A)),

Acol = as.integer(ncol(A)),

xdata = as.double(x),

xrow = as.integer(nrow(x)),

xcol = as.integer(ncol(x)),

bdata = as.double(b),

brow = as.integer(nrow(b)),

bcol = as.integer(ncol(b)),

ydata = as.double(b))

result <- as.matrix(output$ydata)

return (result)

}

In some situations – such as when Scythe is bundled with a full R package – it is useful to
make use of local copies of all the Scythe header files. Consider the following code in a file
called Axplusb2.cc. This code assumes that the two Scythe header files that are used (la.h,
and matrix.h) are in the same directory as Axplusb2.cc. This can be built into a shared
object file in the same manner as above with the exception that a Makevars file should be
created in the same directory as Axplusb2.cc and the header files. This Makevars file should
contain the line:

PKG_CXXFLAGS = -DSCYTHE_COMPILE_DIRECT

which alerts the compiler that all of the header files are in a single directory.

#include "la.h"

#include "matrix.h"

using namespace scythe;

extern "C"{

void AxplusbScythe (const double* Adata, const int* Arow, const int* Acol,

const double* xdata, const int* xrow, const int* xcol,

const double* bdata, const int* brow, const int* bcol,

double* ydata)

{

Matrix<double, Col> A(*Arow, *Acol, Adata);
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Matrix<double, Col> x(*xrow, *xcol, xdata);

Matrix<double, Col> b(*brow, *bcol, bdata);

Matrix<double> y = gaxpy(A, x, b);

for (int i = 0; i < *brow; ++i){

ydata[i] = y(i);

}

}

}

R code similar to that above – with the exception of a change to the argument to dyn.load

– can be used to load and call this function.

5. Discussion

In this paper we have discussed the major design points of the Scythe library and provided
examples of how it can be used. We have attempted to make Scythe nearly as easy to work
with as R while also being nearly as computationally fast as pure C.

Nonetheless, Scythe is a work in progress and we plan to continue developing Scythe in the
future. In particular, we hope to:

� provide additional linear algebra routines, numerical optimizers, and distributions, den-
sities, and pseudorandom number generators,

� continue to optimize the code base for speed, both by improving native Scythe code and
by wrapping additional high quality BLAS and LAPACK routines,

� provide more general interfaces to several broad classes of functions such as the matrix
decomposition functions and the numerical optimization functions,

� provide generic tools for MCMC so that MCMC routines could be written quickly with
very few lines of code.

We also welcome feedback and code from Scythe users.
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