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This article presents an integrated set of Bayesian tools one can use to model hetero-
geneous event counts. While models for event count cross sections are now widely used,
little has been written about how to model counts when contextual factors introduce
heterogeneity. The author begins with a discussion of Bayesian cross-sectional count
models and discusses an alternative model for counts with overdispersion. To illustrate
the Bayesian framework, the author fits the model to the number of women’s rights
cosponsorships for each member of the 83rd to 102nd House of Representatives. The
model is generalized to allow for contextual heterogeneity. The hierarchical model
allows one to explicitly model contextual factors and test alternative contextual explana-
tions, even with a small number of contextual units. The author compares the estimates
from this model with traditional approaches and discusses software one can use to easily
implement these Bayesian models with little start-up cost.
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INTRODUCTION

Heterogeneity is what makes society and, for that matter, statistics
interesting. However, until recently, little attention has been paid to
modeling count data observed in heterogeneous clusters (a notable
exception is Sampson, Raudenbush, and Earls 1997). Explanations
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throughout the social sciences predict that identical individuals will
behave quite differently in different contexts. For example, rational
choice accounts of behavior posit that individuals will act in accor-
dance with an equilibrium that is in part a function of the other actors
in the game. In short, individuals with thesamepreferences and the
samecharacteristics are predicted to behavedifferently in different
contexts. In this article, I review and introduce a type of statistical
model one canuse tomodel counts of observedbehavior that allow the
researcher to model and test different explanations of heterogeneity.
For many decades, social scientists have been interested in model-

ing the number of times a particular event occurs. Yet, these models
havealmost universally beenused for homogeneousevent counts, that
is, individual cross sections when all observations are assumed to be
exchangeable.1 In many applications, this assumption is not tenable.
For example, suppose that I am interested in modeling the number of
times local school boards issued bonds for infrastructure projects in
the 1990s and have collected data from every school board in every
state. If I were to pool every observation into a single collection, I
would be implicitly assuming that upon knowing the relevant charac-
teristics of each school district, contextual state-by-state factors are
unimportant. This assumptionwould be inappropriate in this example
because state laws and funding mechanisms vary widely. The hierar-
chical model I introduce here relaxes this assumption; not only would
it allow one to control for important contextual factors that might
affect bond issues, but it also allows one to test competing contextual
explanations.
The purpose of this article is to develop a generalmodeling strategy

one can use to draw inferences from heterogeneous event counts. For
practical reasons detailed below, I adopt a Bayesian approach and use
Markov chain Monte Carlo (MCMC)methods for estimation. I begin
by discussing Bayesian inference for cross-sectional event counts
in Section 2. This section includes the standard Poisson regression
model, as well as a model that allows for overdispersion. The section
also includes an introduction to the software used throughout this
article. In Section 3, I present results from a cross-sectional model
of the number of women’s rights cosponsorships for each member of
the 83rd to 102nd House of Representatives. I then turn my attention
in Section 4 to heterogeneous counts and offer a hierarchical Poisson
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regression model suitable for this type of data. Section 5 contains
results from the hierarchical model fit to the cosponsorship data. In
this section, I also compare the findings to those from alternative
modeling strategies. The final section concludes with a discussion of
other types of models one can use for heterogeneous event counts.

BAYESIAN INFERENCE FOR
CROSS-SECTIONAL EVENT COUNTS

Before I turn my attention to heterogeneous event counts, it is impor-
tant to cover Bayesian inference for homogeneous counts. These
models are most commonly applied to single cross sections of data
and require the statistical assumption that each observation is con-
ditionally independent and thus exchangeable. These models have
been used extensively in social science for a variety of applications.
For a good introduction to event count models, I refer the reader to
Cameron and Trivedi (1998). In the remainder of this section, I dis-
cuss cross-sectional event count models that allow for equidispersion
and overdispersion.

POISSON REGRESSION

The canonical model for a cross section of event count data is
the Poisson regression model. This model is based on the Poisson
distribution, which is a discrete distribution defined on the nonnega-
tive integers and can be derived from distributions of waiting times
(Cameron and Trivedi 1998:6-8). The Poisson regression model is
used to model a set of countsyi ∈ 0,1,2, ...,∞ = Z

+ on the non-
negative integers for a set of observationsi = 1, . . . , N .
We further observe a row vector of explanatory variablesx ′

i of
dimensionality(1× J ). The Poisson regression model is thus

yi ∼ Poisson(λi),
λi = exp(x ′

iβ).
(1)

We are interested in estimating the parameter vectorβ, which has
dimensionality(J ×1). King (1988) estimates this model usingmax-
imum likelihood. Indeed, equation (1) defines the likelihood, which
is simply the product of Poisson densities across all observationsi.
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The approach I take here is to estimate this model from a Bayesian
perspective. Fundamentally, Bayesians assume that the data are fixed
and that parameters have a distribution. Inference is conducted by
computing the posterior probability density of the parameters condi-
tioned on the data observed. The alternative frequentist (or classical)
approach, on the other hand, assumes that parameters are fixed and
unknown.One thus finds the parametersmost likely to have generated
theobserveddatabymaximizing the likelihood. Theseapproachesare
inextricably related through Bayes theorem. For the Poisson regres-
sion model, I am interested in

f (β|y) ∝ f (y|β) f (β).
The distributionf (β|y) is called the posterior density and is the prob-
ability density ofβ conditioned on observing the data. The posterior
summarizes our a posteriori beliefs about the parameter vectorβ after
having observed the data. From it, one can derive many probability
statements, including those about the probability a particular element
βj differs from zero.
In many realistic applications, the posterior densityf (β|y) does

not take a closed form. However, there is a set of algorithms one
can use to simulate from the posterior density. In so doing, one can
make posterior inferences to any level of precision, depending on the
computation time (which, thankfully, has gotten very inexpensive).
The algorithms employed here are MCMC techniques, introduced by
Geman and Geman (1984), Tanner and Wong (1987), and Gelfand
and Smith (1990). For general introductions to MCMCmethods, see
Gelman, Carlin, Stern, and Rubin (1995) and Gill (2002).
As with any Bayesian model, it is necessary for the practi-

tioner to formally posit her or his prior beliefs. To complete the
Poisson regression model, I assume Normal independent priors
for each element of theβ vector βj :βj ∼ N(µ0, σ

2
0 ).

2 In most
applications, one uses noninformative priors—that is, priors that con-
tribute little information about the parameters of interest (but there
are cases when using informative priors is quite valuable) (Western
and Jackman 1994). In the models presented here, I assume rela-
tively noninformative priors. Thus, for eachβj in Poisson regression,
I assumeβj ∼ N(0,104), which is an extremely flat distribution
that contributes little information.3
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Estimating statistical models using MCMC algorithms requires
two steps that are oftentimes quite difficult. Most common MCMC
techniques, including theGibbs sampler and theMetropolis-Hastings
algorithm, require the practitioner to derive the full conditional distri-
butions. In most cases, this algebra is far from trivial and beyond the
interest of most social scientists. The other difficulty is programming
a computer to sample from the posterior density. To date, most com-
monly used statistical packages lack facility for MCMC estimation.
Thus, programming in a high-level language such as Gauss, R, or
S-Plus or a lower level language such as C++ or FORTRAN is often-
times required to estimate these models. Thankfully, there is a freely
available software package whose sole purpose is the estimation of
Bayesian hierarchical models. This software is called BUGS, which
stands for Bayesian inference Using Gibbs Sampling (Spiegelhalter,
Thomas, Best, and Gilks 2000).4

BUGS eliminates many of the start-up costs of performing
Bayesian inference and requires the practitioner to only write down
the probability model and specify the priors. BUGS then chooses an
appropriate updating algorithm to simulate from the posterior distri-
bution. I refer the reader to the appendix for a brief description of
BUGS and code for the models discussed in this article.

POISSON REGRESSION WITH OVERDISPERSION

The Poisson regression model has been used extensively, but
there is a well-known deficiency of the model: The expected value
(mean) of the distribution equals its variance (Cameron and Trivedi
1998:9-10). There aremany observed counts, however, in which posi-
tive or negative contagionmay occur and cause observed counts to be
overdispersed (having variance greater than the mean) or underdis-
persed (having variance less than themean). It is important to note that
heterogeneity at the individual level will cause counts to be under- or
overdispersed (see King 1989b). Thus, models that allow for under-
or overdispersion allow the researcher to account for (but not model)
unobserved heterogeneity within a single cross section. By neglect-
ing overdispersion and fitting a model that requires equidispersion,
standard errors will be inconsistent and inefficient.
When faced with overdispersion, the traditional approach is to

mix a Gamma distribution with the Poisson, yielding a model with
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overdispersion. By the Greenwood and Yule (1920) compounding
rule, this results in the negative binomial regression model, which
can also be estimated using maximum likelihood. For underdisper-
sion, one must truncate the counts, which yields what King (1989b)
terms thecontinuous parameter binomial model. When the existence
of overdispersion or underdispersion is not known with certainty,
King offers a generalized event count (GEC) model that allows the
researcher to estimate the amount of dispersion without assuming a
priori what type exists. In practice, most social science event counts
tend to exhibit equidispersion or overdispersion (but for some exam-
ples of underdispersion, see King 1989b).
In this article, I will focus only on models that allow for overdis-

persion. However, instead of mixing the Poisson with the Gamma
distribution, I offer an alternative model in which I mix the Pois-
son with the Normal distribution.5 This model was offered by Bres-
low (1984). Here we have the same dependent variableyi , the same
number of observationsN , and the same row vector of covariatesx ′

i .
The only difference is that now I include a random effect, which has
zero mean (thus not contributing to the count) but adds to the vari-
ance ofyi . I will call these effectsηi . The Poisson regression model
with overdispersion can now be written as

yi ∼ Poisson(λi),
λi = exp(x ′

iβ + ηi),

ηi ∼ N(0, τ−1).

(2)

τ is a scalar that captures the precision (inverse variance) of the
random effect, thus indicating how much (or little) overdispersion
there is. Again, to estimate this model in the Bayesian frame-
work, I assume independent priors for eachβj : βj ∼ N(µ0, σ

2
0 ).

I also assume a Gamma prior for the precision parameterτ : τ ∼
G(ν0, δ0). For themodels presented here, I assume noninformative pri-
ors forτ : τ ∼ G(0.001,0.001), which has its mass immediately to the
right of zero and is decreasing onR+. This model is easily estimable
in BUGS; see the appendix for the code employed. The payoff is that
this model allows us to estimate themagnitudeof the overdispersion,
which could carry substantive importance in its own right or have
profound effects on out-of-sample forecasting.
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CASE STUDY: PREFLOOR BEHAVIOR IN THE HOUSE

To illustrate Bayesian inference for cross-sectional event count
models, I fit models to data regarding cosponsorship on women’s
rights legislation in the 83rd to 102nd House of Representatives
(1953-1992). This time period was particularly important due to the
consideration of the Equal Rights Amendment. SeeWolbrecht (2000)
for a rich account of the politics of women’s rights during this time
period.

WOMEN’S RIGHTS COSPONSORSHIPS

In this case study, I employ data collected and previously ana-
lyzed by Wolbrecht (2000), who provides a detailed description of
the data collection and coding scheme. The dependent variableyi is
the number of pro-women’s rights bills cosponsored by eachmember
in each Congress from the 83rd to 102nd sessions. Thus, the member
of Congress in each term is the unit of analysis. The data set contains
N = 8,808 observations. I am interested in seeing what explains
these counts of Congressional behavior.
The legislative studies literature suggests that cosponsorship is

primarily a preference-based activity geared toward position taking
(Campbell 1982) and intralegislative politics (Schiller 1995; Kessler
and Krehbiel 1996; Martin and Wolbrecht 2000). While the impli-
cations of these explanations for the timing of cosponsorships dif-
fer, the implication after the intralegislative game has played out is
clear: Members tend to cosponsor legislation close to their preferred
policy position. Thus, I include a measure of general left-right ideol-
ogy as an explanatory variable: Liberal members should cosponsor
morewomen’s rights legislation than conservativemembers. I include
each member’s D-Nominate first-dimension score as a measure of
left-right tendency (Poole and Rosenthal 1997).6 It is also likely that
partisanship may affect women’s rights cosponsorships. Indeed,
majority party leaders may compel their members to cosponsor leg-
islation (Cox and McCubbins 1993) as a tool for highlighting bill
importance to constituents. I thus include party as an explanatory
variable that takes a value 1 for Democrats and 0 for Republicans.
Wolbrecht (2000) argues that prior to the passage of the Equal Rights
Amendment (ERA) in theearly 1970s, theRepublicanPartywasmore
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supportive of women’s rights than the Democratic Party. Thus, for
these data, I expect Republicans to bemoresupportive of the ERA
after controlling for policy preferences. Finally, I hypothesize that
gendermayaffect thenumberofwomen’s rights cosponsorships.Sim-
ply put, because of their greater awareness of and interest in women’s
rights issues, I expect women to bemore likely to cosponsor women’s
rights legislation than men. I code the gender variable 1 for women
and 0 for men.
In Table 1, I present results from the Poisson regressions of

women’s rights cosponsorships on the explanatory variables noted
above. In this table, I report the posterior mean and standard devi-
ation for each coefficient. Each of these can be interpreted like the
familiar parameter point estimates and standard errors in likelihood
inference. I also report the 95 percent credible intervals (CI), which
summarize the central 95 percent of the posterior densities.7 For both
the equidispersion and overdispersion models, preferences are statis-
tically significant; themore liberal themember of Congress, themore
women’s rights bills thatmember is likely to cosponsor.Gender is also
statistically significant in both models: Women tend to cosponsor at
a higher rate than men. In both models, party is also significant; after
controlling for preferences and gender, Republicans tend to cospon-
sor more women’s rights bills. There is profound overdispersion in
this model, which implies that many members “over-cosponsor.”8

The importance of this finding of overdispersion cannot be overstated.
The results suggest that there exists heterogeneity that is not explicitly
accounted for by the model. Substantively, this implies that in differ-
ent contexts (likely in different Congresses), members with the same
issue preferences, the same gender, and the same party are behaving
quite differently. To model and thus test for contextual explanations
of these differences, it is necessary to employ a model that allows for
this behavioral heterogeneity. I turn to such a model in Section 4.

POSTERIOR PREDICTIVE DENSITIES

When performing any statistical analysis, it is always useful to
take coefficient estimates and transform them in a manner that is
substantively meaningful. Perhaps themost effective way to do this is
to use the parameter estimates to predict out-of-sample behavior. In
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TABLE 1: Summary of the Posterior Densities From Poisson Regressions of Cosponsorships on All Women’s Rights Legislation During the
83rd to 102nd House of Representatives

Equidispersion Model Overdispersion Model

95Percent CI 95Percent CI
Posterior Posterior Posterior Posterior

Parameter Mean Standard Deviation Lower Upper Mean Standard Deviation Lower Upper

β1-Constant 0.368 0.020 0.328 0.408 –0.277 0.038 –0.348 –0.201
β2-Preferences –3.129 0.042 –3.211 –3.048 –3.193 0.086 –3.363 –3.024
β3-Party –0.892 0.032 –0.955 –0.830 –0.986 0.059 –1.108 –0.867
β4-Gender 1.193 0.025 1.142 1.242 1.410 0.077 1.258 1.558
τ−1(Variance) 1.432 0.047 1.343 1.526
τ1(Precision) 0.699 0.023 0.656 0.744

NOTE: Burn-in iterations = 1,000; Markov chain Monte Carlo (MCMC) iterations = 10,000;n = 8,808. The equidispersion model is written in
equation (1), and the overdispersion model is written in equation (2). The 95 percent CI is the 95 percent credible interval, which summarizes the central
95 percent of the posterior density. Noninformative priors for theβj and precisionτ are assumed:βj ∼ N (0,104) andτ ∼ G(0.001,0.001).
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the Bayesian framework, one is interested in the posterior predictive
density (Rubin 1984). For some out-of-sample observationsỹ, the
posterior predictive distribution for a Poisson regression model is
simply

f (ỹ|y) =
∫
f (ỹ, β|y)dβ =

∫
f (ỹ|β)f (β|y)dβ.

This average off (ỹ|β) over the posterior distributionf (β|y) can be
evaluated using MCMC techniques. In fact, the distribution of any
function ofβ can be estimated using MCMC methods.
To wit, I have computed the posterior predictive densities for

hypothetical members of Congress. I am specifically interested in
liberal (Lib), moderate (Mod), and conservative (Con) members of
both parties (D or R) and both genders (M or W). I define a typi-
cal liberal as someone 2 standard deviations below the sample mean
on the D-Nominate scale (–0.627), a moderate equal to the sample
mean (–0.027), and a conservative as someone 2 standard deviations
above the sample mean (0.573). I plot these densities in Figure 1.
Many important patterns can be discerned from this figure. First, lib-
eral women, whether Democrats or Republicans, tend to cosponsor
women’s rights legislation most. The posterior predictive mean is
approximately 23 cosponsorships perCongress for liberalRepublican
women and approximately 9 cosponsorships for liberal Democratic
women. After liberal women, liberal and moderate Republican men
cosponsor women’s rights legislation next most often, followed by
liberal Democratic men. For all other groups, the number of poste-
rior predictive cosponsorships is negligible. It seems that preferences,
party, and gender seem to be driving cosponsorship behavior in the
83rd to 102ndHouses. Yet, the results are notwholly satisfying. There
is strong evidence of overdispersion, which suggests heterogeneity.
To model that heterogeneity, I now turn to a multilevel event count
model.

BAYESIAN INFERENCE FOR MULTIPLE CROSS
SECTIONS: HIERARCHICAL POISSON REGRESSION

So far, I have presented results from commonly used models that
can be estimated in standard software packages using maximum
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Figure 1: Boxplots of Posterior Predictive Densities for Hypothetical Members of
the House

likelihood. Besides philosophical claims about the importance of
subjective probability, what is the advantage of Bayesian inference?
In this section, I argue that the advantage of Bayesian approaches
generally, and hierarchical or multilevel models specifically, is that
they allow extremely flexible modeling of heterogeneous data. Many
of these models are computationally impossible to estimate (or very
nearly so) in classical settings. In many cases, asymptotic results are
unreliable due to the small number of clusters or the small num-
ber of observations within each cluster. With a continuous-response
variable, a hierarchical linear model can be used. Frequentist esti-
mation for this model, assuming a reasonably large number of clus-
ters, is tractable (Raudenbush and Bryk 2002; Jones and Steenbergen
2002). But for a count response variable, the frequentist estimation
technology is not nearly aswell developed (seeRaudenbush andBryk
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2002, chaps. 10, 14). Also, the number of clusters typically has to be
large (Breslow and Clayton 1993). Bayesian inference usingMCMC,
on the other hand, provides a computationally efficient way to esti-
mate hierarchical models for heterogeneous data, even with a small
number of clusters.
Assume now that we observe data fromK different contexts (or

clusters).Withineachcluster,wehave the followingobservations:i =
1, . . . , Nk. Note that there may be a different number of observations
Nk in each cluster. The dependent variableyi,k ∈ 0,1,2, . . . ,∞ =
Z

+ is an event count variable as discussed above. What sort of model
should be applied to this data? One approach would be to pool all of
the observations into one sample, which is the model discussed in the
previous section. This would yield

yi,k ∼ Poisson(λi,k),
λi,k = exp(x ′

i,kβ).

which is the Poisson regression model discussed above. For this
model, however, there is an implicit assumption that an individuali

with the same vector of characteristicsx ′
i,k would behave the same

in each decision contextk. That is, pooling the data requires one to
assume behavioral homogeneity. If individuals are hypothesized to
behave differently in different contexts, pooling data in this manner
is inappropriate. In some applications, this assumption is justifiable,
yet what happens if contextual factors affect behavior?
An alternative model would be to estimate independent models for

each contextk. So, one would estimate

yi,k ∼ Poisson(λi,k),
λi,k = exp(x ′

i,kβk).

which is simplyk separate Poisson regressions. This is a viable strat-
egy but throws away the baby with the bathwater. If contextual fac-
tors are important, one would ideallymodelthose contextual effects
as opposed to ignoring them by estimating individual models. By
dividing the data in this fashion, drawing inferences about contextual
factors is impossible.
The common ground between these approaches is the Bayesian

hierarchical model. This modeling strategy assumes that there are
some commonalities between each contextk but that there may
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exist profound differences. The approach allows the practitioner to
explicitly model these differences. In so doing, one is able to draw
inferences that dominate fully pooled and completely separatedmod-
els on a mean square error basis (Efron and Morris 1973). While
common in themany applied statistics literatures (such as educational
statistics, psychology, and sociology), hierarchical models have only
been sporadically used in the study of politics. Three notable appli-
cations are Western (1998), who uses a hierarchical model to model
political determinants of economic growth; King, Rosen, and Tanner
(1999), who use hierarchical models to perform ecological inference;
and Martin (2001), who uses hierarchical models to study congres-
sional decision making. Hierarchical models are similar to the idea
of fractional pooling (Bartels 1996), where each cluster can “bor-
row strength” from other clusters to yield highly efficient parameter
estimates. Jones and Steenbergen (2002) provide a comprehensive
introduction to multilevel modeling for continuous-response vari-
ables from a classical standpoint.
The hierarchical model looks strikingly like the previous equation,

but now we explicitly model the distribution ofβk, the column vector
of parameters in each decision context. The first level of the model is
withineachcluster, and thesecond level includescontextual variables.
The hierarchical Poisson regression model is thus

yi,k ∼ Poisson(λi,k),
λi,k = exp(x ′

i,kβk).

βk,1 ∼ N(z′
kα1, ξ

−1
1 ),

βk,2 ∼ N(z′
kα2, ξ

−1
2 ),

...
...

...

βk,J ∼ N(z′
kαJ , ξ

−1
J ).

(3)

whereβk = (βk,1, βk,2, . . . , βk,J )
′. In this formulation, I have assumed

that each individual element ofβk can be modeled by independent
regressions with a row vector of cluster-level covariatesz′

k, of dimen-
sionality (1× P), whereP denotes the number of covariates at the
second level of the hierarchy. Note that each of these regressions need
not include the same number of explanatory variables.9 Notice that
the second-level specification serves as the priors for the first-level
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parameters. Thus, one only needs to specify the priors on theαj,1 to
αj,P and theξj parameters for allj . In this application, I assume stan-
dard priors:α·,· ∼ N(µ0,·,·, σ 2

0,·,·), where· denotes all allowable values,
and for the precisionsξ· ∼ G(ν0,j , δ0,j ).
Theadvantageof thismodel over the pooled or independentmodels

is clear. One can look at the posterior density of the parametersβk to
see how the characteristicsx ′

i,k affect behaviorwithin each clusterk.
Also, one can look at the parametersα·,· to see how contextual factors
affect behavior at the first level. In short, thismodeling strategy allows
one tomodelandtestfor various causes of behavioral heterogeneity.
This approach will also provide more efficient estimates of the first-
level effects due to “borrowing of strength” across clusters.
Others have applied Bayesian hierarchical event count models to

various sorts of data. Albert (1992) fits a random-effects Poisson
model to homerun data to detect contextual factors that affect vari-
ous seasons of 12 baseball players. Christiansen and Morris (1997)
develop a hierarchical Poisson model with a different parameteriza-
tion than that above and provide software one can use in S-Plus to
simulate from the posterior density. Chib, Greenberg, and Winkel-
mann (1998) posit an MCMC algorithm one can use to estimate from
random-effects panel event count model using a unique parameteri-
zation and apply the model to epilepsy and patent data. Berry, Reese,
and Larkey (1999) develop an interesting set of hierarchical models
that canbeused to compareplayers in different erasof sports. For their
hockey data, they offer a hierarchical Poisson model that includes an
elaborate clustering scheme and a random curve function to allow for
aging. While these models are well traveled in applied statistics, they
have been underused in social science applications.

MODELING HETEROGENEITY IN WOMEN’S RIGHTS
COSPONSORSHIPS IN THE HOUSE, 1953-1992

The results from pooling all of the data from the 83rd to the 102nd
House of Representatives and treating them as if they were a sin-
gle cross section demonstrated that there was a great deal of unob-
served heterogeneity in the data. Substantively, this is not difficult to
swallow. Clearly, contextual factors, such as the national political



44 SOCIOLOGICAL METHODS & RESEARCH

agenda, congressional rules, and chamber characteristics, would
induce profoundly different behavior from a member of Congress
with the identical policy preference of the same party and gender. In
this section, I fit a hierarchical Poisson regression to model behav-
ioral heterogeneity in this women’s rights sponsorship data. Not only
am I interested in explaining behavior within a particular Congress,
but I am also interested in how the macropolitical factors discussed
below affect congressional behavior.
This data set contains the number of women’s rights bills cospon-

soredbyeverymember in eachof theseCongresses.10Returning to the
notation used in equation (3), here we observe behavior forK = 20
Congresses (or clusters).Within each House, there arei = 1, . . . , Nk
members. With member replacement within each Congress and the
brief change of the size of the House in the late 1950s,Nk is approxi-
mately 440 in eachCongress, although the actual numbers are slightly
different for each Congress. We thus observe countsyi,k ∈ Z

+, one
for each memberi in each Congressk. I use the same explana-
tory variablesxi,k: policy preferences measured with first-dimension
D-Nominate scores, a party dummy, and a gender dummy.
To serve as a baseline, I have estimated a set of independent Pois-

son regressions—one for each Congressk. Due to the large number
of estimated parameters and limited space, I do not summarize the
posterior distributions here.11 There are some things to be taken from
the results. First, the constants across each decision context vary
substantially: The posterior mean takes its lowest value of−2.971 in
the 83rd House and its maximum value of 1.738 in the 99th House.
Substantively, exponentiating these constants gives us the expected
number of bills cosponsored for a moderate Republican man. For the
83rd House, we would expect this individual to cosponsor 0.01 bills,
but in the 99th House, this member would be expected to cosponsor
5.7 bills. Clearly, the assumption of homogeneity is not met. Further-
more, we note that preferences significantly affect behavior in all but
the 86th House. Yet, themagnitude of the relationship varies through-
out the time period, again implying behavioral heterogeneity. The
same story holds for the party and gender dummies: Theβk,3 andβk,4
coefficients vary across clusters. Theweakness of this baselinemodel
is that while heterogeneity is apparent, we can neither model it nor
test for contextual effects. If the goal of social science is to evaluate
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competing social explanations, it is necessary to employ statistical
models that allow one to test contextual explanations. I thus turn
my attention to a hierarchical Poisson regression model, which does
just this.

HIERARCHICAL POISSON REGRESSION ESTIMATES

The hierarchical model presented earlier allows one to model het-
erogeneity with suitable contextual variables. Clearly, members of
Congress have behaved quite differently in different Congresses.
What explains this heterogeneity? I hypothesize that four contex-
tual factors are likely to affect cosponsorship behavior on women’s
rights. First, I hypothesize that the national political agenda will
affect cosponsorship; once women’s rights generally, and the ERA
specifically, are firmly a part of the national agenda, the number of
cosponsorships should increase. This is derived from electoral con-
siderations. Once women’s rights became supported by a majority,
more members, regardless of preferences, party, and gender, would
tend to cosponsor legislation. As argued by Wolbrecht (2000), the
women’s rights agenda was not firmly entrenched on the national
political agenda until the 92nd Congress, the Congress that passed
the ERA.
Second, congressional rules are also likely to affect congressional

behavior. Throughout this time period, cosponsorship rules were lib-
eralized. Until 1967, cosponsorship was not allowed in the House.
Thus, members introduced identical legislation, using their name as
the primary sponsor. In 1967, the rule was changed to allow for multi-
ple cosponsorship, allowing up to 25members to cosponsor each bill.
This did not catch on for many years, andmost members continued to
introduce individual bills. This changed in 1978, when the rules were
again changed to allow for unlimited cosponsorship. The second rule
change was widely accepted by themembership and began to be used
immediately. Thus, after the rules change in the 95th House, I expect
cosponsorship behavior for all members to increase.
These first two contextual factors are hypothesized to explain the

baseline level of cosponsorship for all members. In terms of the hier-
archical model, they should thus affect the constant. For the 92nd
Congress and thereafter, the constantβ1,k should bebigger thanbefore
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due to the change in the women’s rights agenda. Similarly, after the
rules change in the 95th House, we would expect the baseline level
of cosponsorships to be higher, all things being equal. I thus include
two dummy variables at the second level of the hierarchy, one that
takes the value 1 for all Houses after the 91st House and one that
takes the value 1 after the 95th House. I use these variables to model
the distribution of the constant as

βk,1 = α1,1 + α1,2(Post 91st Dummyk)

+α1,3(Post 95th Dummyk)+ εk εk ∼ N(0, ξ−1
1 ). (4)

The hypothesis is thatα1,2 should be positive, indicating an increased
level of women’s rights cosponsorships for all members.α1,3 should
also be positive since it captures the agenda effect and the effect of
the rules change.
I hypothesize that two additional contextual factors affect women’s

rights cosponsorships. First, I expect that chamber heterogeneity
should affect the importance of preferences. I measure chamber het-
erogeneity by computing the standard deviation of the D-Nominate
first-dimension scores for the chamber. The more heterogeneous
the chamber, the more the magnitude of the preferenceβ2,k should
decrease and vice versa. As preference heterogeneity increases in the
chamber, the agenda for all members becomes larger. In addition, the
probability of effecting policy change on any issue is more difficult
in a heterogeneous chamber. It is known that more cosponsorship is a
meaningful signal to policymakers (Young andWilson 1997; Kessler
and Krehbiel 1996). For women’s rights specifically, liberal members
desire policy change from the status quo, but with more issues on
the agenda, I hypothesize that they are less likely to cosponsor. This
implies that the marginal impact of preferences on women’s rights
cosponsorships is decreasing in chamber heterogeneity.
Second, differences in party structure are likely to affect cospon-

sorship behavior. As the distance between each party’s median
member (again measured using first-dimension D-Nominate scores
as the absolute value of themedian Democrat less themedian Repub-
lican) increases, policy change will be easier for the majority party
because of polarization. In this time period, the Democratic Party
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was the majority, which also happened to be more liberal than the
Republicans. Thus, with greater polarization between the parties,
liberals (who happened to be overwhelmingly Democratic) would
be more likely to cosponsor women’s rights bills to influence their
fellowmembers, andconservativeswouldbe less likely. I thushypoth-
esize that themarginal impact of preferences is increasing inmymea-
sure of party difference. The specification for theβk,2 parameters is
thus

βk,2 = α2,1 + α2,2(Heterogeneityk)

+ α2,3(PartyDiffk)+ εk εk ∼ N(0, ξ−1
2 ). (5)

On the basis of the arguments above, I expectα2,2 to be negative and
α2,3 to be positive. I assume that the remainingβk,3 andβk,4 on party
and gender, respectively, are drawn from a common distribution with
meansα3,1 andα4,1 and variancesξ

−1
3 andξ−1

4 , respectively.
I present the results from the hierarchical Poisson regression in

Table 2. For the sake of space, I do not present the posteriors from the
first-level parameters in this table.12 Themore interesting findings are
in the hyperparametersα·,· that capture the contextual effects. While
the CI for α1,2 contains zero, 93.8 percent of the posterior density
sample falls above zero. Thus, I can state with 93.8 percent certainty
that this coefficient is positive, which substantively implies that the
macropolitical change in the women’s rights agenda did in fact con-
tribute to a greater number of cosponsorships for all members, con-
sistent with the argument of Wolbrecht (2000).α1,3 is also positive as
hypothesized and significantly different from zero, which indicates
that the rules change contributed aboveandbeyond the agenda change
in affectingwomen’s rights cosponsorships. Preference heterogeneity
explains variance in theβk,2 parameters. As hypothesized, as pref-
erence heterogeneity increases, the marginal impact of preferences
increases. There is no substantively significant finding for the party
difference variable, however. Theα3,1 andα4,1 parameters summa-
rize the grandmean of theβk,3 andβk,4 parameters across the models.
The conditional error variances of the hyperparameter regressions are
interesting. Indeed, given onlyK = 20 clusters, precise estimation of
the hyperstructure is unlikely. However, these rather small variances
indicate a good fit.13
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TABLE 2: Summary of the Posterior Density of a Hierarchical Poisson Regression
of Cosponsorships on Women’s Rights Legislation for the 83rd to the
102nd House of Representatives

95Percent CI
Posterior Posterior

Parameter Mean Standard Deviation Lower Upper

α1,1-Constant –0.993 0.286 –1.564 –0.428
α1,2-Post-91st 0.777 0.513 –0.241 1.805
α1,3-Post-95th 1.088 0.534 0.022 2.144
α2,1-Constant 23.05 7.07 8.63 36.53
α2,2-Hetero. –139.4 41.58 –217.9 –53.5
α2,3-PartyDiff 26.26 12.43 0.53 49.72
α3,1-Constant –0.806 0.077 –0.961 –0.655
α4,1-Constant 0.984 0.077 0.829 1.135
ξ−1
1 (Variance) 0.705 0.288 0.340 1.431
ξ−1
2 (Variance) 0.820 0.367 0.362 1.762
ξ−1
3 (Variance) 0.079 0.041 0.027 0.180
ξ−1
4 (Variance) 0.077 0.050 0.020 0.206

NOTE: Burn-in iterations = 10,000; Markov chain Monte Carlo (MCMC) iterations = 25,000;
n = 8,808.Themodel iswritten inequation (3). This tableonly contains theLevel 2parameters.
The 95 percent CI is the 95 percent credible interval, which summarizes the central 95 percent
of the posterior density. Noninformative priors for theα·,· andξj are assumed:α·,· ∼ N (0,104)
andξj ∼ G(0.001,0.001).

POSTERIOR PREDICTIVE DENSITIES

While the table of coefficients is important in judging the
significance and magnitude of the explanatory variables at the first
and second levels of the hierarchies, the question remains as to what
the substantive impact of these variables have on women’s rights
cosponsorships. If it were the case that the number of cosponsor-
ships varied between 4.9 to 5.1 for a typical member across deci-
sion contexts, we could conclude that the contextual factors had
little substantive impact. To assess the substantive fit of the model,
I have examined some interesting posterior predictive densities for
two typical members of Congress: a liberal female Republican and
a moderate male Democrat (using the same operationalizations as
Figure 1). For each Congress, I plot a boxplot of the number of
predicted cosponsorships. Figure 2 contains the summaries for the
liberal Republican woman—the individual most likely to cosponsor
women’s rights legislation. For the 83rd to the 91st Congresses, this
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hypothetical member is predicted to cosponsor between 1.5 and
4 pieces of legislation per Congress. However, the agenda change
in the 92nd Congress is quite apparent; this member is expected to
cosponsor more than 11 bills in the 92nd Congress and more than
40 bills in the 93rd Congress and thereafter. The jump for the rules
change in the 95th Congress is also apparent.
For the hypothetical moderate Democratic male in Figure 3, simi-

lar patterns are discernible. While the agenda change does not seem
to have as dramatic an effect, the rules change in the 95th Congress
seems to affect behavior dramatically. Indeed, this expectation for the
hypothetical member went from substantially less than 1 cosponsor-
ship per Congress until the 97th Congress, when the number jumps
to 1.6 and then further jumps to 6.0 in the 98th Congress. Holding all
else constant, the rules change dramatically affected cosponsorship
behavior on women’s rights bills, as did the change in the macro-
political agenda. Clearly, contextual factors have a strong substantive
impact on congressional cosponsorship behavior.

COMPARISONS WITH OTHER APPROACHES

What advantages does this Bayesian approach afford over tra-
ditional approaches? One approach, oftentimes used in political
science, is to account for contextual differences by including a fixed
effect (i.e., a dummy variable) for each contextual unit—in this case,
for each Congress. There are two weaknesses to this approach. First,
it assumes that differences between contextual units exist in themean
level only; that is, none of the structural parameters differs across
contexts. Second, while the model accounts for this specific type of
heterogeneity, it does notexplainit. It is thus not a particularly satis-
fying strategy if explanation of contextual effects is of interest.
To explicitly model heterogeneity in the structural parameters

across contexts, there are essentially three strategies that can be used
(Jones and Steenbergen 2002; Raudenbush and Bryk 2002). The first
is simply to substitute the second-level equations (4) and (5) into the
second line of equation (3). This results in an interactivemodel, which
can easily be estimated using existing software for cross-sectional
models. It is important to note that unlike the fixed-effects model
mentioned above, this model allows structural parameters to differ
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Figure 2: Boxplots of Posterior Predictive Densities for a Liberal Republican Woman
in the 83rd to 102nd Houses

across contexts. The problem with this approach is not unlike the
problem of measurement error. This model assumes that the first-
level parameters areperfectlyexplained by the second-level covari-
ates (technically, this assumes thatξ−1

· = 0). However, this is a very
strong assumption that surely fails in realistic settings. If the assump-
tion does not hold, parameter estimates can be inefficient and biased
(Jones and Steenbergen 2002). For the sake of comparison, I present
results from an interactive model in Table 3. The estimates for the
interactive model are maximum likelihood estimates from a Poisson
regressionmodel. Since theMCMC algorithm employed for the hier-
archical model is sampled from the exact posterior distribution, and
since the priors used for the structural parameters and the variance
terms are noninformative, the MCMC results in Table 2 can serve as
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Figure 3: Boxplots of Posterior Predictive Densities for a Moderate Democratic Man
in the 83rd to 102nd Houses

a baseline for comparison. The findings from the interactive model
are inferior. First, the standard errors on the second-level parameters
are entirely too small. Second, the magnitudes of the parameters in
equations (4) and (5) are off themark. Both of these are solely a result
of the assumption that the second-level covariates perfectly explain
the differences in the first-level parameters.
A second approach is to perform a two-stage procedure, first fit-

ting separate Poisson regressions (usingmaximum likelihood) for the
data from each context and then using the point estimates from these
models as dependent variables in a second-stage regression analysis
(estimated using ordinary least squares).14 I report results from this
metamodel in Table 3. The problemwith this approach is that it treats
the first-level estimates as if they were known with certainty. This, in
general, will produce overconfidence in results and may cause biases
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TABLE 3: Summaries of Alternative Models of Cosponsorships on Women’s Rights Legislation for the 83rd to the 102nd House of
Representatives

Interactive (n = 8,808) Meta (n = 20) W-Meta (n = 20) HGLM (n = 8,808)

Parameter MLE SE OLS SE WLS SE PQL SE

α1,1-Constant –0.874 0.034 –1.010 0.281 –0.713 0.277 –1.765 0.323
α1,2-Post-91st 1.100 0.037 0.765 0.506 0.573 0.435 3.334 0.239
α1,3-Post-95th 0.737 0.028 1.117 0.528 1.231 0.395 –0.736 0.279
α2,1-Constant 10.40 1.416 27.13 7.42 26.95 8.08 5.78 4.82
α2,2-Heterogeneity –50.33 7.523 –164.1 44.32 –167.1 47.11 –18.62 21.45
α2,3-Party Difference 2.165 1.757 31.83 13.16 34.13 12.37 –6.95 5.01
α3,1-Constant –0.695 0.033 -0.815 0.083 –0.810 0.076 –0.804 0.079
α4,1-Constant 1.066 0.025 1.006 0.107 1.008 0.074 0.992 0.076

ξ−1
1 (Variance) NA 0.710 0.667 1.573
ξ−1
2 (Variance) NA 0.907 0.861 1.196
ξ−1
3 (Variance) NA 0.137 0.342 0.081
ξ−1
4 (Variance) NA 0.231 0.331 0.078

Log-likelihood -12785.04                              NA                                             NA       -14777.07

NOTE: The Interactive model contains maximum likelihood estimates (MLE) from a Poisson regressionmodel with interactive terms between the Level
1 and Level 2 covariates. The Meta model contains ordinary least squares (OLS) estimates of the Level 2 parameters from a two-stage analysis in which
the point estimates of Level 1 Poisson regressions are treated as known quantities. TheW-Meta model contains weighted least squares (WLS) estimates
of the Level 2 parameters from a two-stage analysis in which the point estimates of Level 1 Poisson regressions are treated as known quantities and
the reciprocal of their estimated standard errors are used as weights. The hierarchical generalized linear model (HGLM) results are from a unit-specific
model fit using penalized quasi-likelihood (PQL) in HLM (Raudenbush, Bryk, and Congdon 2000). SE denotes the (asymptotic) standard error.
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if the errors among the first-level estimates are correlated (which they
surely are). In this application, due to the small number of clusters and
the large number of data points within each cluster, the meta-model
does a reasonable job. All of the coefficient estimates are compara-
ble with the posterior means from the Bayesian treatment. So too are
the estimates of the conditional error variances in the second-level
regressions. Onemanner in which one can account for the uncertainty
in the first-level estimates using this two-stage strategy is to weight
each observation in the second-level model by the reciprocal standard
error from the first level. The third model in Table 3 contains these
weighted least squares estimates.15 In general, however, these meta-
models will not provide satisfactory answers (Raudenbush and Bryk
2002). First, with a larger number of clusters or with fewer observa-
tionswithin each cluster, the amount of overconfidence in the findings
will become apparent. Moreover, biases can enter the results if corre-
lations exist between Level 1 estimates or between the Level 2 errors.
The more principled approach is to treat the first-level estimatesas
estimatesand account for that uncertainty in the subsequent analyses.
The third alternative approach is to fit the hierarchical model in

equation (3)with frequentistmethods. Themostwidely used software
package tofit hierarchicalmodels fromaclassical perspective is called
HLM (Raudenbush,Bryk, andCongdon2000).Our hierarchical Pois-
son regression is a special case of a hierarchical generalized lin-
ear model (HGLM). See Raudenbush and Bryk (2002, chaps. 10, 14)
for an introduction to HGLMs. Estimating HGLMs from a frequen-
tist perspective poses a number of difficulties due to the neces-
sity of numerically integrating out random effects to compute the
likelihood. While various approaches exist, HLM uses the penalized
quasi-likelihood (PQL) approach of Breslow and Clayton (1993) to
estimate HGLMs. The downside to using this approach is its diffi-
culty dealing with a small number of clusters. Indeed, “the desirable
properties [of the maximum likelihood approach] are based ... on
large-sample theory. In the case of hierarchical models, the number
of higher-level units ... is usually key in determining whether these
large-sample properties will apply” (Raudenbush and Bryk 2002:14).
In other words, the number of clustersK must be sufficiently large to
trust the point estimates and the standard errors for any hierarchical
model estimated using maximum likelihood. In this context, we are
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faced with only 20 clusters. The results in the final columns of Table
3 are poor; only the parameters with no second-level covariates are
estimated with the correct magnitude and standard errors.
These results suggest that a traditional frequentist analysis of these

data would be less than satisfying. Beyond epistemological debates
about the strengths and weaknesses of Bayesian inference, the results
here suggest that Bayesian methods are a promising modeling tool
when dealing with multilevel data with a small number of contex-
tual units (Western and Jackman 1994). In sociology, political sci-
ence, and other social sciences, this is a commonly faced problem. Of
course, these findings beg a number of broader questions, including
the following: “What is a large enough number of clusters to use fre-
quentist methods?” While general answers to this question probably
do not exist, some careful Monte Carlo studies could shed some light
on the issue. However, as long as one is willing to posit prior beliefs
about the parameters of interest and can write down an algorithm to
simulate from the posterior density, the Bayesian approach provides
a satisfactory solution.

CONCLUSION

Theanalysispresentedabovedemonstrates theusefulnessofBayesian
estimation using MCMC for the analysis of clustered, heterogeneous
data. The model above, however, is just the tip of the iceberg. Indeed,
there are many more sophisticated models one can use to model all
sorts of contextual effects. Not only can these models be general-
ized with more levels of analysis (e.g., looking at roll call voting by
members of every state legislature for a 50-year time period), but
contextual differences could also bemodeled across statesandacross
time using three levels of analysis. One could also develop more
elaborate cross-cutting clustering schemes or more elaborate hyper-
structures that include autoregressive components and allow for var-
ious types of curve fitting for the hyperparameters using splines and
nonparametric forms (see, e.g., Berry et al. 1999). One could also
simultaneouslymodelwithin-cluster heterogeneity andacross-cluster
heterogeneity using both strategies outlined above in tandem.
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The advantage of the hierarchicalmodeling strategy is that it allows
social scientists to systematically answer questions that were previ-
ously unanswerable using standard statistical methods. Indeed, con-
text affectsallmannerof political behavior.Hierarchicalmodelsallow
the researcher to systematically evaluate these explanations. It is also
important to note that the methodology presented herein does not
constrain the practitioner. The only constraints are the data and the
imagination of the researcher.Whenmodeling event counts or dealing
with a small number of clusters, Bayesian approaches are preferred
over other alternatives.
To conclude, it is worthmentioning othermodels one can usewhen

dealing with other types of heterogeneous event counts. In some sit-
uations, one is faced with multivariate count data—that is, observing
a vector of countsyi for each observational unit that are likely to be
related.Anexamplewouldbemodeling thenumberof cosponsorships
and the number of discharge petitions signed by a single member of
Congress. King (1989a) offers a seemingly unrelated Poisson regres-
sion model that is useful for modeling multivariate counts. Chib and
Winkelmann (1999) discuss a flexible Bayesian estimation strategy
for such counts. In some applications, observed counts do not follow
a Poisson distribution but rather include a disproportionate number of
zeros. Substantively, this is indicative of a threshold effect. To model
this sort of data, one must turn to the class of zero-inflated mod-
els, which is essentially a mixture of a binomial choice model and
an event count regression. These models, reviewed by Zorn (1998),
are useful when modeling event counts with an inordinate number
of zeros. Finally, when dealing with time-series event counts, one
must be mindful of dealing with the problem of persistence. Brandt,
Williams, Fordham, and Pollins (2000) offer a time-series regression
model called thePEWMAmodel, which is particularly usefully when
dealing with time series.

APPENDIX

BUGS Code

This appendix contains BUGS code for all models presented in
the text. These programs can be easily modified to fit models with
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other data. All programs are available in electronic form at the
replication Web site (as both plain text files and as WinBUGS ODC
files), along with the data set employed. Since BUGS code is some-
what dependent on the platform used, here I present the key model
definition statements for themodels presented in this article. The data
input statements and the specification of starting values differ slightly
across platforms. All of the models presented here were estimated
using WinBUGS 1.3. BUGS minimizes the start-up cost of perform-
ing Bayesian inference by alleviating the need to program in a high-
level language and choosing an appropriate MCMC algorithm given
the problem at hand. BUGS also comes with a suite of routines one
can usewith R andS-Plus to test for convergence called CODA (Best,
Cowles, and Vines 1997). For a comprehensive treatment of how to
use BUGS, compile and estimate models, and test for convergence,
consult (2000) Spiegelhalter et al. (1997) and Best et al. (1997).

POISSON REGRESSION WITH POSTERIOR PREDICTION

The first model is the Poisson regression model with the estima-
tion of posterior predictive distributions. The results from this model
appear in Table 1 and Figure 1. Note that I use the same model defi-
nition notation used in the article. Since the posterior predictive dis-
tributions are just Monte Carlo averages over the posterior density of
β, they too can be simulated within the sampler.

model cosponsor;
{
for (i in 1:N)

{
log(mu[i]) <-

(beta[1] * cons[i] +
beta[2] * dnom[i] +
beta[3] * party[i] +
beta[4] * gender[i]) ;

cospon[i] ˜ dpois(mu[i]);
}

# Priors
for(j in 1:K)
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{
beta[j] ˜ dnorm(0.0, 0.0001);
}

# Posterior Predictive Distributions
pred[1] <- exp(beta[1] + -0.627 * beta[2]

+ 0 * beta[3 ] + 1 * beta[4]); # libRW
pred[2] <- exp(beta[1] + -0.027 * beta[2]

+ 0 * beta[3 ] + 1 * beta[4]); # modRW
pred[3] <- exp(beta[1] + 0.573 * beta[2]

+ 0 * beta[3 ] + 1 * beta[4]); # conRW
pred[4] <- exp(beta[1] + -0.627 * beta[2]

+ 1 * beta[3 ] + 1 * beta[4]); # libDW
pred[5] <- exp(beta[1] + -0.027 * beta[2]

+ 1 * beta[3 ] + 1 * beta[4]); # modDW
pred[6] <- exp(beta[1] + 0.573 * beta[2]

+ 1 * beta[3 ] + 1 * beta[4]); # conDW
pred[7] <- exp(beta[1] + -0.627 * beta[2]

+ 0 * beta[3 ] + 0 * beta[4]); # libRM
pred[8] <- exp(beta[1] + -0.027 * beta[2]

+ 0 * beta[3 ] + 0 * beta[4]); # modRM
pred[9] <- exp(beta[1] + 0.573 * beta[2]

+ 0 * beta[3 ] + 0 * beta[4]); # conRM
pred[10] <- exp(beta[1] + -0.627 * beta[2]

+ 1 * beta[3 ] + 0 * beta[4]); # libDM
pred[11] <- exp(beta[1] + -0.027 * beta[2]

+ 1 * beta[3 ] + 0 * beta[4]); # modDM
pred[12] <- exp(beta[1] + 0.573 * beta[2]

+ 1 * beta[3 ] + 0 * beta[4]); # conDM
}

To allow for overdispersion, one only needs to add the random
effect to thelog(mu[i]) term:

lambda[i];

To define its distribution, one needs to add the following within the
model definition loop:

lambda[i] ˜ dnorm(0.0, tau);
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Finally, to place a prior on the precision, one should add the following
in the section that defines the priors:

tau ˜ dgamma(0.001,0.001);

HIERARCHICAL POISSON REGRESSION

The final code I present is from the hierarchical Poisson regression
model. Here the data are loaded from three files: one that contains the
Level 1 covariates sorted by Congress, one that contains the number
of observationsNk within each cluster, and one that contains the
contextual (second-level) covariates. This code begins with the first
level, assuming a Poisson regressionwithin each cluster. Then, across
each clusterk, I assume independent regressions are noted in the text.
The code concludes by placing priors on all of the hyperparameters.

model hierarchical;
{
# Model Level One
for (k in 1:K)

{
for (i in lower[k]:upper[k])

{
log(mu[i]) <-

(beta[1,k] * cons[i] +
beta[2,k] * dnom[i] +
beta[3,k] * party[i] +
beta[4,k] * gender[i]);

cospon[i] ˜ dpois(mu[i]);
}

}
}
# Model Level Two
for (k in 1:K)

{
nu[1,k] <- alpha1[1] + alpha1[2] * era1[k]

+ alpha1[3] * era2[k];
nu[2,k] <- alpha2[1] + alpha2[2] * hsdnom[k]

+ alpha2[3] * ptydist[k];
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nu[3,k] <- alpha3[1];
nu[4,k] <- alpha4[1];
for (j in 1:J)

{
beta[j,k] ˜ dnorm(nu[j,k],gamma[j]);
}

}

# Priors
for(m1 in 1: M1)

{
alpha1[m1] ˜ dnorm(0.0, 0.0001);
}

for(m2 in 1: M2)
{
alpha2[m2] ˜ dnorm(0.0, 0.0001);
}

for(m3 in 1: M3)
{
alpha3[m3] ˜ dnorm(0.0, 0.0001);
}

for(m4 in 1: M4)
{
alpha4[m4] ˜ dnorm(0.0, 0.0001);
}

for (j in 1:J)
{
gamma[j] ˜ dgamma(0.001,0.001);
igamma[j] <- 1/gamma[j];
}

NOTES

1. Observations are said to be exchangeable if themodel results are not changed by relabel-
ing the data values. This implies that the data are generated conditional on themodel parameters
in precisely the same way for each observation (Gill 2002).

2. Other priors could just as easily be applied. One could assume a multivariate Normal
prior β ∼ NJ (β0, B

−1
0 ) or an improper uniform prior onR. Unless using informative priors,

this choice usually makes very little difference in practice. If it does make a difference in a
particular application, the prior, not the likelihood, is driving the inference.
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3. In addition, for all of the models presented below, I tested for sensitivity of the results
to various prior specifications. For all models, the substantive conclusions remain the same
given other prior specifications, including reasonable informative priors. I have also tested
for convergence using the Geweke (1992) and Heidelberger and Welch (1981) diagnostics
implemented in CODA (Best, Cowles, and Vines 1997).

4. This software is available on the Web for Windows, Unix, and Linux from the MRC
Biostatistics Unit and the Imperial College School of Medicine at St. Mary’s, London, at
http://www.mrc-bsu.cam.ac.uk/bugs/. There are many helpful examples at this Web site. Gilks,
Richardson, and Spiegelhalter (1996) also include some examples of models estimated with
BUGS (Bayesian inference Using Gibbs Sampling).

5.Asnotedbelow in theapplication, the inferencesdrawnabout theamountofheterogeneity
in the data are essentially the same when mixing the Poisson with a Gamma or a Normal
distribution. The choice to use the Normal distribution is made for computational reasons; the
current WinBUGS release does not include support for the negative binomial distribution.

6. Clearly, there are measures that better capture women’s right preferences (see Martin
andWolbrecht 2000). However, I employ these scores here because they are available for a long
period of time.

7. In the classical paradigm, all parameters are fixed but unobservable. Thus, the probability
that a parameter is positive equals 0 or 1, yet it cannot be observed. This requires mental
gymnastics to interpret confidence intervals. The 95 percent credible intervals, on the other
hand, can simply be interpreted as intervals where the (random) parameter falls 95 percent of
the time.

8. Due to the large sample size and the noninformative priors, the posterior means are
almost the same as the maximum likelihood estimates. So too is the estimated amount of
overdispersion; for a negative binomial regression, the estimatedα parameter is 1.63.

9. A more general model would be to model the distribution of theβk vectors with a
multivariate regression model:βk ∼ Nj (Akα,!

−1). However, when there are many first-level
parameters and few clusters, it becomes difficult, if not impossible, to estimate!with precision.
In the application below, with 4 first-level covariates and 20 contexts,! has 10 free elements,
which would be impossible to reliably estimate.

10. This model explicitly ignores the the temporal ordering of the clusters. Since every
member of theHouse stands for reelection every two years, it is not unreasonable to assume that,
conditional on the second-level covariates, each Congress is exchangeable, and each member
within each Congress is exchangeable. Given more data, it would be possible to explore the
time-series error structure (Brandt, Williams, Fordham, and Pollins 2000).

11. These results are available on the replication Web site.
12. These results are also available on the replication Web site.
13. To test for convergence, I employed the Geweke (1992) and Heidelberger and Welch

(1981) diagnostics implemented in CODA (Best et al., 1997).
14. I thank an anonymous reviewer for this suggestion.
15. It is important to note that the weighted least squares approach accounts for therelative

amount of uncertainty between each observation, but it does not account for the overall amount
of uncertainty.
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