robust standard errors. But those with access to the appro-
priate matrix computations should probably compute the
jack-knifed HC3. While the ease of doing this varies from
package to package, it is surely easy enough to do so in
LIMDEP,

Finally, it should be noted that White's approach to
standard errors which are robust to heteroskedasticity suc-
ceeds because it does not assume that the analyst knows the
nature of the heteroskedasticity. Such ignorance is clearly
the most common situation. But there are times, such as
with time-series—cross-section data, that the analyst may
have some better insight about the nature of €. Such
structure can then be incorporated into Equation 3. This
is the basis for the “panel correct standard errors” | devel-
oped with Jonathan Katz (Beck and Katz 1995). There
are also circumstances where knowledge about the form
of the heteroskedasticity can be used to improve estima-
tion through weighted least squares. Such an approach has
proven extremely useful in the analysis of time-series, where
it is often the case that heteroskedasticity follows a simple
autoregressive form, leading to Engle's (1982) autoregres-
sive conditional heteroskedasticity (ARCH) model and its
generalizations. But in most cross-sectional studies it is
hard to parameterize heteroskedasticity. In such cases the
computation of robust standard errors at least lessens the
likelihood of incorrect inference.
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Introduction

Political scientists are often faced with optimization
problems involving discrete parameter spaces, multi-modal
functions, functions which are not well defined, noisy func-
tions, and even non-differentiable functions. These prob-
lems can arise in maximum likelihood estimation (MLE),
forecasting, dynamic modeling, and some types of game
theoretic models. While these problems were daunting
10 years ago, recent advances in computational optimiza-
tion combined with falling computer prices have brought
us much closer to reasonable solutions. In these applica-
tions, we encounter optimization problems of the following
general form: minimize c(z;) s.t. z; € X where ¢ (+) is
the objective function and X is the solution space'. The
objective function ¢(-) maps the members of the solution
space onto the real number line. This article serves as a re-
view of three widely used discrete optimization algorithms
that are well suited to dealing with the problems above and
provides suggestions of the types of problems each method
is well suited. The three techniques we review are: genetic
algorithms, tabu search, and simulated annealing. These al-
gorithms are able to provide solutions to optimization prob-
lems in which calculus based optimization is infeasible or
impossible. While the focus of this review is on discrete
optimization, it should be noted that two of the algorithms

INote that minimizing c () is equivalent to maximizing —c(-).
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(genetic algorithms and simulated annealing) discussed be-
low have real-coded counter-parts.

Genetic Algorithms

Genetic algorithms (GAs) were created by Holland
(1975, 1992) to study the mathematical underpinnings of
adaptive behavior. While GAs were designed to simulate
natural adaptive behavior, they have also proven to be very
powerful optimization procedures. This twofold ability of
GAs to both simulate adaptive behavior and to solve ex-
tremely difficult optimization problems has proven quite
useful to several social scientists. Examples of social scien-
tific work employing GAs include searches for optimal strate-
gies in complicated formal models (Axelrod 1987; Miller
1989; Andreoni and Miller 1990; and Kollman, Miller, and
Page 1992), and the estimation of LISREL models (Mebane
et al. 1995). GAs have also been used to find solutions to
systems of nonlinear equations (Shaefer, 1985).

GAs are implemented in roughly the following man-
ner. First, choose a coding scheme which maps each ele-
ment of the search space onto a unique bit vector 2. Then
randomly select a small set, X; C X, of m potential solu-
tions to the optimization problem. Evaluate the objective
function ¢(-) at each potential solution z; € X;. The dif-
ference between c(x;) and some measure of the expected
value of c¢(z;) (for example, L E;n:?)m c(zj)) provides a
measure of fitness for ;. Then form a new set of potential
solutions, X1, by applying a series of genetic operators to
X:. Reproduction generally occurs first. This operator se-
lects potential solutions from X, (with replacement) on the
basis of fitness (relatively more fit solutions are more likely
to be selected). The crossover operator is then applied.
The crossover operator randomly takes vectors of potential
solutions, breaks them apart, and recombines them. For
example, the crossover operator could transform {11111}
and {00000} into {11000} and {00111}. Finally, the mu-
tation operator flips elements of the solution vectors to the
opposite value with some low probability. Denote the new
set of solutions formed from X; as X;;; C X.

Iterating this procedure a number of times yields
a very powerful optimization algorithm. As Holland and
Miller (1991) note, this three-part process of reproduction,
crossover, and mutation may seem to be nothing more than
a random search algorithm which retains the best potential
solutions. As they further argue, this is in fact not the case.
In order to understand why, think of each bit of a solution
vector as an arm of an n-armed bandit. The problem then is

2Real number encoded GAs are also possible. For discussions of
the implementation and performance of real-coded GAs, we refer
the reader to Eshelman and Schaffer (1993), Wright (1991), and
Antonisse (1989). While we only discuss binary-coded GAs here
for reasons of simplicity and space, it should be noted that the use
of real-coded GAs has grown rapidly in the pas t few years.

to allocate trials to each of the n arms in a manner which
will yield the highest cumulative payoff. Holland (1975,
1992) has shown that GAs allocate trials to building blocks
in a manner which very closely corresponds to the optimal
solution of an n-armed bandit problem.

Goldberg (1989) provides a non-technical introduc-
tion to GAs. For advanced discussions of additional genetic
operators as well as refinements and variations of the three
basic genetic operators we urge the reader to see the edited
volumes by Grefenstette (1987), Rawlins (1991), and Whit-
ley (1993).

Tabu Search

Tabu search, first proposed by Glover (1977), is a
meta-heuristic used to solve both combinatorial and dis-
crete optimization problems. For the purpose of discrete
optimization problems, the heuristic used in the tabu search
algorithm is a local improvement scheme, beginning with a
good feasible solution. Local search starts from an initial
solution z; € X and searches to find an improving solution
zi+1 € X. In other words, the search attempts to find an
Zit1 such that ¢(z;11) < c(xy).

Consider the case when optimizing over a discrete
space X with respect to an a priori objective function c(-).
Define X as the solution space which contains all of the
possible solutions € X. For each z; the practitioner de-
fines a set N(z;) C X which denotes the neighborhood of
z;. On each iteration of the search, the objective function
value is evaluated for all z € N(z;). The entire neigh-
borhood is searched and an improving move is chosen by
selecting the move x; which most improves the value of
¢(z;). That move x; is chosen and is labeled z;11. The
search moves to the next iteration, by looking at the neigh-
borhood of the accepted move, N (z;41). The problem with
simple local search is that traps of local optimality cannot
be escaped. In a discrete space, local optimality is defined in
terms of an a priori neighborhood structure as opposed to
an e—neighborhood in the continuous case. Although uni-
modal functions are easily optimized, multi-modal functions
make local search an impractical optimization technique.
To remedy this problem, simple local search is modified to
accept some non-improving moves in an attempt to escape
traps of local optimality.

The first of these meta-heuristics based on local
search is called tabu search. Tabu search uses a mem-
ory structure (called the tabu list) that restricts the pos-
sible members of the neighborhood to which a search can
progress. Thus, once a local optima is encountered, the
search will not be able to revisit that area of the solution
space. The tabu list must be small enough to allow the
search to carefully scrutinize certain parts of the solution



space, yet large enough to prevent a return to a previously
generated solution. The tabu search meta-heuristic also
uses an aspiration criterion which defines a condition under
which the tabu status of a certain move can be overrid-
den. Short term memory functions are employed to inten-
sify and diversify the search. Tabu search is allowed to run
for a maximum number of iterations that is computationally
practical. A comprehensive description of tabu search can
be found in Glover and Laguana (1993).

When implementing tabu search, the practitioner
must define the neighborhood structure with respect to
the solution space, select the type of tabu list to be em-
ployed, and determine the aspiration criterion to be used.
Practitioners also traditionally choose to employ multi-start
techniques, where tabu search is re-started numerous times
from different members of th e solution space. Throughout
the operations research literature, there are many examples
of successful implementations of tabu search as well as dis-
cussions of effective tabu structures and aspiration criteria
(Cvijovic and Klinowski 1995; Glover and Laguana 1993;
and Glover 1990).

Simulated Annealing

Another meta-heuristic which relies on local search
is called simulated annealing. Simulated annealing was first
introduced by Kirkpatrick et. al. (1983) and Cerny (1985)
and has roots in the work of Metropolis et al. (1953). Sim-
ulated annealing is analogous to the annealing process in
physical chemistry, when liquid metals are heated and then
left to cool into a steady, organized state. Numerous suc-
cessful applications of simulated annealing can be found in
Collins, et. al. (1988). The simulated annealing algorithm
can be described in terms of a Markov chain. The solu-
tion space X consists of the feasible solutions that satisfy
all the constraints z € X. An objective function c(-) is
defined on X. From each state z; a transition is a search
action that combines the selection of a state z; € N(z;)
with the decision of whether to move to z; state or not.
The neighborhood N (z;) C X of state z; is defined as the
set of states that can be reached from state x; in exactly
one step. Thus, if the transition probability p,,,; > 0, then
z; € N(zj). Furthermore, the selection is reversible; if
zj € N(z;) then z; € N(x;). In simulated annealing, each
member of the neighborhood is randomly selected, and the
algorithm then determines whether to move on to the next
state. The decision to move to the next state depends on
the values of ¢(x;) and ¢(x;11). The decision allows the
acceptance of some non-improving moves, thus escaping
traps of local optimality. The algorithm provides a chance
for the search to escape from a local optimum based on an
acceptance probability, which is defined as:
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Pr(accept x;y1) = min {1, "

eXp[C(.Z’i+1) - c($l)] } (1)

where t is the temperature control parameter. This tem-
perature control parameter is decreased as the search pro-
gresses, thus allowing the search to settle down into a local
optimum.

It can be shown that convergence to the global op-
timum is guaranteed if the temperature control parame-
ter approaches 0 and an infinite number of transitions is
made. However, since this convergence is quite impracti-
cal, a finite-time implementation of the simulated annealing
algorithm is often used to approach the optimal solution
within a reasonable amount of computation time. When
implementing simulated annealing, a practitioner must de-
fine the neighborhood structure with respect to the solution
space and develop a cooling schedule with which to decre-
ment the temperature parameter ¢. A survey of successful
cooling schedules can be found in Hajek (1988) and Collins
et. al. (1988).

Simulated annealing is guaranteed to converge to
the global optimum of functions defined over both discrete
and continuous spaces as the cooling parameter ¢ goes to
zero. Thus, it is particularly appropriate for estimation of
econometric models.?

Conclusion

In sum, the operations research literature provides
numerous computational techniques that political scientists
can implement to conquer previously intractable problems.
These techniques can be applied to optimization problems
encountered in the estimation of econometric models, fore-
casting, dynamic modeling, and some types of game theo-
retic models. For a comprehensive description, evaluation,
and comparison of many discrete optimization techniques,
we refer the reader to Ackley (1987) who empirically as-
sesses the success of each algorithm.
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In many ways it is difficult to remember life without
a direct pipeline into the Internet and the World Wide Web.
It was just within the past few years that most people in
political science have migrated full-force onto the Internet
and the Web, and it is becoming quite clear now that both
are shaping the way we engage in research and how we
interact professionally, in quite profound ways.

One of the developments of interest to political
methodologists has been the rapid evolution of our Political
Methodology World Wide Web server and our “polmeth”
discussion group, both maintained by Jonathan Nagler at
the University of California, Riverside, through generous
support by the National Science Foundation and UC River-
side. The purpose of this article is to take a brief look at
the progress of Polmeth in the past year. | want to present
some statistics on the usage of Polmeth which clearly docu-
ment the dramatic and rapid effect which Polmeth has had
on political methodology in the past year, and then present
a few ideas for future development of our professional and
research connections to the Web.

A Brief History

Polmeth began without much of a bang in the spring
of 1994. A number of people began an email discussion that
spring focused on both the desireability and the functionality
of providing a centralized place where people could deposit
the papers which they were to present at upcoming political
methodology summer conferences, and at other national
meetings. A number of important issues were raised in
these discussions:

e Where would the paper repository be located, and how
could it be maintained?

e How could we encourage (or worse yet, coerce) our
colleagues into using this internet service instead of
making endless copies of papers, hauling them on air-
planes bound for their next meeting, and passing them
out at the meeting instead of distributing them before-
hand?

e What formats would we use? How could people eas-
ily distribute machine-readable versions of their papers
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without running the risk that the contents could be
easily altered?

To examine the practical issues behind the development of a
true Internet paper distribution system, we began two sim-
ple experiments. We convinced the section leadership that
this practice would help advance methodology intellectu-
ally — and that they should thereby encourage people who
were presenting their papers at the 1994 Summer Method-
ology Conference to provide machine-readable versions of
their papers to the participants of the meeting, before the
meeting. We set up an anonymous ftp directory at Cal-
tech where paper presenters could place machine-readable
versions of their papers, and an email reflector where they
could send an email which would be “bounced” to every
meeting participant.

To resolve the practical issues of paper format, we
asked people to provide, at bare minimum, a version of their
paper which could be printed on any HP laser jet. We also
asked people to provide a Postscript version of their paper, if
possible. Our thinking was that virtually everyone we knew
had either an HP laser jet, or an Apple-style laserwriter.
Thus, these two formats should cover the bases.

The experiment was a great success. Almost all of
the papers presented at the 1994 Summer Methodology
Conference were uploaded to our anonymous ftp server be-
fore the meeting; after the meeting another paper or two
were added (they still are available on Polmeth!). As each
paper was uploaded, we verified the integrity of the upload
by checking that we ourselves could print the paper; if the
upload was successful, we notified every meeting partici-
pant of the availability of the paper. The only problems
we encountered in our experiment were “persuading” our
colleagues that it was in their best interest to “post” their
paper before the meeting, and some difficulties associated
with the improper use of non-binary transmissions and re-
trievals. At the 1994 Conference, we had an open discussion
of this experiment, and the meeting participants were vir-
tually unified in their recommendation that we attempt to
expand this service.

The Development of Polmeth

The rapid evolution of the Web in late 1994 and
early 1995 facilitated this task. The members of our in-
formal discussion group agreed that the development of a
Web server for the Political Methodology community was
the right direction to take. With the support of the NSF,
Nagler was able to set up Polmeth on a high-speed Hewlett-
Packard workstation in April 1995; after that, Polmeth was
in business!

The early offerings on Polmeth were scarce. There
were a series of links to other “interesting” sites, informa-
tion about the 1995 Summer Methodology Conference, and



